Tangente à la courbe d'une fonction en un point - Cours de Mathématiques Première avec Maxicours

01 49 08 38 00 - appel gratuit de 9h à 18h (hors week-end)

Tangente à la courbe d'une fonction en un point

Soit f une fonction définie sur un intervalle I.
On appelle (C) sa courbe dans un repère orthogonal.

1. Coefficient directeur d'une sécante
La droite passant par 2 points distincts A et M de la courbe (C) de f est appelée sécante à la courbe de f en A et en M.
Le coefficient directeur de cette sécante vaut .
En posant et pour h non nul, ce coefficient directeur s'écrit , et on reconnait ici le taux d'accroissement de f entre a et a + h.

2. Tangente à la courbe de f
Dire que f est dérivable en a signifie que le coefficient directeur des sécantes (AM) tend vers un réel correspondant au coefficient directeur de « la position limite » de ces sécantes.
On appelle tangente à la courbe de f au point A la droite passant par A et de coefficient directeur .
3. Lecture graphique du nombre dérivé
Exemple :
Sur la courbe ci-dessous, déterminer f '(–1), f '(0) puis f '(–2).

Rappel : le nombre dérivé de f en a correspond au coefficient directeur de la tangente en A(a, f(a)).

En ce qui concerne f '(–1), on se place au point A d'abscisse (–1). La tangente y est horizontale, symbolisée par une double flèche. Cela signifie que le nombre dérivé en a = –1 est nul, autrement dit f '(–1) = 0.

Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B.

Pour cela, on peut :
• lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur .

Ainsi, f '(0) = –1,5.

• En partant de A, on décale de 1 unité en abscisse et on décale de 1,5 unités en ordonnée en descendant. Ainsi, f '(0) = –1,5.

De la même façon que ci-dessus, en décalant de 1 unité en abscisse à partir du point d'abscisse (–2), on rejoint la droite en décalant de 4,5 unités en montant. Ainsi, f '(–2) = 4,5.




 


4. Équation générale d'une tangente
Soit f une fonction dérivable en un réel a.
La tangente à la courbe de f au point A(a, f(a)) a pour équation

Preuve :
La tangente (T) au point A a pour équation y = mx + p et a pour coefficient directeur f '(a).
En remplaçant, (T) : y = f '(a)x + p.
Le point A(a, f(a)) appartient à cette tangente donc ses coordonnées vérifient l'équation de (T) soit , ce qui donne .
Ainsi, en réinjectant dans l'équation de (T) on obtient ce qui se retient sous la forme .

Application :
Écrire une équation de la tangente (T) à la courbe de f au point A(1,–3) sachant que f '(1) = 2.

La propriété ci-dessus permet d'affirmer que (T) a pour équation .
Dans le cas présent a = 1, f(1) = –3 et f '(1) = 2.
Ainsi, (T) a pour équation soit y = 2x – 5.

Découvrez
Maxicours

Des profs en ligne

Géographie

Aidez votre enfant à réussir en SVT grâce à Maxicours

Des profs en ligne

  • 6j/7 de 17h à 20h
  • Par chat, audio, vidéo
  • Sur les 10 matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Une interface Parents