Répétition d'épreuves indépendantes - Maxicours

01 49 08 38 00 - appel gratuit de 9h à 18h (hors week-end)

Répétition d'épreuves indépendantes

Objectifs :
• Expériences aléatoires indépendantes : représenter la répétition d’expériences identiques et indépendantes par un arbre pondéré.
• Construire un arbre pondéré pour déterminer la loi d’une variable aléatoire.
• Épreuve de Bernoulli, loi de Bernoulli.
1. Répétition d’épreuves identiques, indépendance
• On répète n fois une même expérience appelée épreuve.
On dira que ces épreuves sont indépendantes dès lors que l’issue d’une épreuve ne dépend pas de celles qui l’ont précédée.
Résultat admis : si une expérience aléatoire est la répétition de n épreuves identiques et indépendantes, elle peut être représentée par un arbre pondéré.
Une issue est alors une liste ordonnée de résultats représentée par un chemin sur l’arbre pondéré.

Exemple :
Une épreuve consiste à lancer un dé normal à six faces, non truqué (équiprobabilité) deux fois de suite. Si le résultat est un 1 ou un 6, on marque 1, si c’est 2 ; 3 ou 5 on marque 0, enfin, si c’est 4 on marque –1.On fait alors le produit des points obtenus lors des deux lancers.

a. Variables aléatoires de cette épreuve :
On peut obtenir –1 ; 0 ou 1. Les valeurs de la variable aléatoire sont donc –1 ; 0 ; 1.
b. Loi de probabilité : il faut construire l’arbre pondéré :




Xi –1 0 1
p(X = xi)

Les résultats sont laissés sous forme de fraction dans la totalité des cas (on pourrait passer en fractions irréductibles).

Remarques :
• La probabilité de chaque issue, représentée par un chemin, est le produit des probabilités de chaque branche de ce chemin.
• La probabilité d’un événement (une variable aléatoire) est la somme des probabilités des issues de chacun des chemins qui réalisent cet événement.
2. Épreuve de Bernoulli, loi de Bernoulli
a. Définition : épreuve de Bernoulli
Une épreuve de Bernoulli est une expérience aléatoire qui admet exactement deux issues notées :
succès s de probabilité p et échec de probabilité q = 1 – p.

Exemple :
Lors d’une course de 17 voitures où chaque concurrent à la même probabilité que les autres de gagner, on parie sur le 5. Deux possibilités : le 5 gagne, le pari est un succès de probabilité s = , ou le 5 ne remporte pas la victoire, le pari est un échec de probabilité  .
b. Loi de Bernoulli
On décide de prendre pour variable aléatoire X = 1 en cas de succès de probabilité p, et X = 0 en cas d’échec de probabilité 1 – p.
La loi de probabilité s’écrit :
k
0
1
P(X = k)
1 – p
p

On dit que la variable aléatoire suit une loi de Bernoulli.

Remarque : l’espérance mathématique devient .

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Découvrez
Maxicours

Des profs en ligne

Géographie

Des profs en ligne

  • 6j/7 de 17h à 20h
  • Par chat, audio, vidéo
  • Sur les 10 matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Une interface Parents

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de Cookies ou autres traceurs pour améliorer et personnaliser votre navigation sur le site, réaliser des statistiques et mesures d'audiences, vous proposer des produits et services ciblés et adaptés à vos centres d'intérêt et vous offrir des fonctionnalités relatives aux réseaux et médias sociaux.