Suites numériques - Maxicours

Suites numériques

Objectifs
• Modéliser des situations simples à l’aide de suites, sens de variation d’une suite.
• Savoir écrire le terme général d’une suite arithmétique et d’une suite géométrique.
• Connaître le sens de variation des suites arithmétiques et géométriques.
1. Définition
Une suite numérique est la donnée d’une suite de nombres qui peuvent être logiquement déterminés ou non.
On note (un) ou la suite de nombres.

Par abus de langage on s’autorise aussi à la noter u, ce qui n’est pas une notation générale.

Exemples :

• (un)  = {0 ; 1 ; 3 ; 8 ; 2 ; 11 ; 3 ; 7} est une suite (finie) de (8) nombres sans raison apparente, on n’est pas capable de décider de la valeur du terme qui viendrait après le dernier donné.

• (un) : 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; … on peut penser que le terme suivant sera « logiquement » 6.

• (un) : 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19… est le début de la suite des nombres premiers (qui ne sont divisibles que par 1 et eux même). Le suivant sera 23.
2. Modes de génération d'une suite numérique
a. Générer une suite en fonction de la variable n
On donne une relation, une formule, un = f(n) permettant de calculer chacun des termes.

Exemples :

• Pour tout entier naturel . Le premier terme sera , le second , le 3e, le 15e.

• Pour tout entier naturel n non nul, . Le premier terme sera , le second , … le 10e terme sera .
b. Générer une suite par récurrence
On donne le premier terme ainsi qu’une relation permettant de passer d’un terme à son suivant.

Exemples :

• Pour tout entier naturel n, on pose u0 = 2 et . Le premier terme est donné, . Le 2e terme sera , le 3e. Il n’est pas possible de calculer le 15e terme par exemple sans avoir calculé tous les termes précédents.

• Pour tout entier naturel n, on pose u0 = –1 et . Le premier terme est donné, c’est u0 = –1. Le 2e sera , le 3e . La suite est constante. Dans ce cas il est facile de calculer n’importe quel terme.

 


3. Sens de variation d'une suite
• Une suite (un) est croissante si pour tout entier n on a (qui est équivalent à ).
• Une suite (un) est décroissante si pour tout entier n on a (qui est équivalent à).
• Une suite (un) est constante si pour tout entier n on a (qui est équivalent à ).
Comme pour les fonctions, on dira que la suite est monotone si elle est soit croissante, soit décroissante, soit constante.
Exemples :
• La suite des nombres premiers (un) : 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; 23… est croissante.
• La suite définie pour tout entier n par u0 = –1 et est constante (voir ci-dessus).
• Sens de variation de la suite définie pour tout entier naturel n non nul par :
on calcule
car le numérateur est négatif, et comme n est positif n(n+1) l’est aussi,
Donc , la suite est décroissante.
4. Représentation graphique d'une suite
Dans le plan muni d’un repère, on place les points de coordonnées Mn (n ; un).

Exemple :

Soit définie par . On peut calculer la valeur de quelques termes, puis en faire une représentation graphique (points non reliés).

On trouvera (valeurs arrondies au dixième) u0 = 3 ; u1 = 6 ; u2 = 7,4 ; u3 = 7,8 ; u4 = 7,9 ; u5 = 8 ; u6 = 8 … que l’on place dans le plan muni d’un repère.



Attention, une calculatrice en mode fonction, un tableur mal initialisé, donnent une représentation graphique erronée. Les points ne doivent pas être reliés (bien choisir le mode d’affichage pour le tableur, placer la calculatrice en mode « suite » et points non reliés, voir ci-après).

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

quote blanc icon

Découvrez Maxicours

Exerce toi en t’abonnant

Des profs en ligne

  • 6 j/7 de 17 h à 20 h
  • Par chat, audio, vidéo
  • Sur les matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Un compte Parent

Inscrivez-vous à notre newsletter !

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Conformément à la Loi Informatique et Libertés n°78-17 du 6 janvier 1978 modifiée, au RGPD n°2016/679 et à la Loi pour une République numérique du 7 octobre 2016, vous disposez du droit d’accès, de rectification, de limitation, d’opposition, de suppression, du droit à la portabilité de vos données, de transmettre des directives sur leur sort en cas de décès. Vous pouvez exercer ces droits en adressant un mail à : contact-donnees@sejer.fr. Vous avez la possibilité de former une réclamation auprès de l’autorité compétente. En savoir plus sur notre politique de confidentialité