Echantillonnage
Objectifs :
Savoir utiliser la loi binomiale pour prendre une
décision sur une hypothèse à partir de
la fréquence d’une variable aléatoire
calculée sur une proportion d’une
population.
1. Rappels
a. En classe de seconde
On définit un échantillon de taille
n par la répétition de n
épreuves indépendantes d’une
même expérience aléatoire à
deux issues notées 0 et 1 (épreuve dite de
Bernoulli).
La fluctuation d’échantillonnage (phénomène naturel fréquent) invite à se poser la question de la confiance envers les résultats trouvés.
Il est admis : « pour des échantillons de taille n
25 et de proportion p du caractère comprise
entre 0,2 et 0,8 : si f désigne la
fréquence du caractère dans
l’échantillon, f appartient à
l’intervalle
avec une probabilité d’au moins 0,95. Cet
intervalle est nommé intervalle de fluctuation au
seuil de 95 %».
Exemple :
→ Un sondage est réalisé pour avoir une tendance du résultat d’une élection entre deux candidats A et B d’une région. Pour un total de 33 000 électeurs, le sondage portant sur 723 personnes interrogées donne 384 voies au candidat A. Peut-on considérer que ce candidat sera élu au premier tour car il dépasse 50 % des intentions de vote ?
Taille de l’échantillon : n = 723 (très supérieur à 25). Fréquence du caractère:
arrondie à 0,531 à 10–3
près (valeur bien supérieure à 50
%).
Intervalle de fluctuation au seuil de 95 % :
(valeurs arrondies à
10–3).
Il n’est donc pas certain qu’il soit élu. On peut remarquer que les instituts de sondage donnent des pourcentages d’intention de vote, sans indiquer la « fourchette » dans laquelle se trouve cette valeur.
La fluctuation d’échantillonnage (phénomène naturel fréquent) invite à se poser la question de la confiance envers les résultats trouvés.
Il est admis : « pour des échantillons de taille n


Exemple :
→ Un sondage est réalisé pour avoir une tendance du résultat d’une élection entre deux candidats A et B d’une région. Pour un total de 33 000 électeurs, le sondage portant sur 723 personnes interrogées donne 384 voies au candidat A. Peut-on considérer que ce candidat sera élu au premier tour car il dépasse 50 % des intentions de vote ?
Taille de l’échantillon : n = 723 (très supérieur à 25). Fréquence du caractère:

Intervalle de fluctuation au seuil de 95 % :

Il n’est donc pas certain qu’il soit élu. On peut remarquer que les instituts de sondage donnent des pourcentages d’intention de vote, sans indiquer la « fourchette » dans laquelle se trouve cette valeur.
b. Calculs pour une loi binomiale
Utilisation d’une calculatrice pour
déterminer P(X=k) pour une loi binomiale de
paramètres n et p :
Par exemple P(X=k) pour n = 1000, p = 0,5 et k = 462.
• Sur Texas instrument (82 stat, 83 & 84) entrer la fonction « binomFdp(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k = 462.
• Sur TI-NSpire dans une page calcul entrer « binomPdf(1000,0.5,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialPD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bpd » pour finir) avec les arguments k = 462, n = 1000 et p = 0,5.
Utilisation d’un tableur pour déterminer P(X=k) :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;FAUX) ».
Remarque : sur certains tableurs au lieu de « FAUX » il faut écrire 0.
Utilisation d’une calculatrice pour déterminer P(X
k) pour une loi
binomiale de paramètres n et p :
Par exemple P(X
k) pour n = 1000,
p = 0,5 et k = 462 (utilisé
ci-après).
• Sur Texas instrument entrer la fonction « binomFrép(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k= 462.
• Sur TI-NSpire dans une page calcul entrer « binomCdf(1000,0.5,0,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialCD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bcd » pour finir) avec les arguments k = 462 la valeur à tester, n = 1000 et p = 0,5.
Utilisation d’un tableur :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;VRAI) » que l’on tirera vers le bas.
Remarque : sur certains tableurs au lieu de « VRAI » il faut écrire « 1 ».
Par exemple P(X=k) pour n = 1000, p = 0,5 et k = 462.
• Sur Texas instrument (82 stat, 83 & 84) entrer la fonction « binomFdp(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k = 462.
• Sur TI-NSpire dans une page calcul entrer « binomPdf(1000,0.5,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialPD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bpd » pour finir) avec les arguments k = 462, n = 1000 et p = 0,5.
Utilisation d’un tableur pour déterminer P(X=k) :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;FAUX) ».
Remarque : sur certains tableurs au lieu de « FAUX » il faut écrire 0.
Utilisation d’une calculatrice pour déterminer P(X

Par exemple P(X

• Sur Texas instrument entrer la fonction « binomFrép(n,p,k) » (qui est dans le menu « distrib ») avec les arguments n = 1000, p = 0,5 et k= 462.
• Sur TI-NSpire dans une page calcul entrer « binomCdf(1000,0.5,0,462) »
(rappel : les points sont des virgules, les virgules des caractères de séparation des variables).
• Sur Casio entrer la fonction « BinomialCD(k,n,p) » (dans « OPTN » puis « STAT » puis « DIST » puis « BINM » et « Bcd » pour finir) avec les arguments k = 462 la valeur à tester, n = 1000 et p = 0,5.
Utilisation d’un tableur :
• Dans une cellule écrire « =LOI.BINOMIALE(valeur de k ; n ; p ;VRAI) » que l’on tirera vers le bas.
Remarque : sur certains tableurs au lieu de « VRAI » il faut écrire « 1 ».
2. Echantillonnage, intervalle de fluctuation, prise de
décision
a. Intervalle de fluctuation
Pour une variable aléatoire X suivant une loi
binomiale
l’intervalle de
fluctuation au coefficient 95 % de la fréquence
de succès est
où a est le
plus petit entier tel que
et b le plus petit
entier tel que
.




Remarques :
• Contrairement à la règle de fluctuation de la fréquence vue en seconde, cette propriété est vraie pour toutes valeurs de n et p.
• Les valeurs de a et b sont fournies par des tables. Il est possible de les calculer avec une calculatrice ou un tableur.
• Il existe d’autres seuils de fluctuation. Les plus utilisés sont le seuil 95 % et 99 %.
b. Utiliser la loi binomiale pour rejeter ou non une
hypothèse
On suppose que la proportion d’un caractère
d’une population est p. C’est une
hypothèse.
Après réalisation d’un sondage de ce caractère sur un échantillon de taille n de cette population on constate une fréquence f de ce caractère.
Pour accepter ou rejeter l’hypothèse choisie, au seuil de confiance de 95 %, c'est-à-dire au risque de 5 % de se tromper, on calcule l’intervalle I de fluctuation à 95 %.
• si f est dans l’intervalle on accepte l’hypothèse effectuée au risque de 5 % (ou avec 95 % de confiance dans le résultat),
• si f n’est pas dans l’intervalle on rejette l’hypothèse au risque de 5 %.
Exemple :
→ On effectue la simulation de 1000 d’une pièce équilibrée sur une calculatrice. On obtient 484 « Pile », soit une fréquence de 0,484. Cette valeur est elle suffisamment proche de la valeur attendue 0,5 ?
Soit X la variable aléatoire associée à la sortie de « Pile ». Les 1000 épreuves sont indépendantes, avec deux issues. La variable suit une loi binomiale
.
Au seuil de 95 % l’intervalle de fluctuation serait
dans lequel se trouve la valeur
de l’échantillon.
Au risque de 5 % on accepte l’hypothèse que le générateur aléatoire de la calculatrice à bien fonctionné.
Pour trouver a et b on utilise une calculatrice comme rappelé au paragraphe 1, puis on teste quelques valeurs autour de 0,5 × 1000.
On a obtenu
;
;
et
.
D’où a = 463 et b = 531.
Après réalisation d’un sondage de ce caractère sur un échantillon de taille n de cette population on constate une fréquence f de ce caractère.
Pour accepter ou rejeter l’hypothèse choisie, au seuil de confiance de 95 %, c'est-à-dire au risque de 5 % de se tromper, on calcule l’intervalle I de fluctuation à 95 %.
• si f est dans l’intervalle on accepte l’hypothèse effectuée au risque de 5 % (ou avec 95 % de confiance dans le résultat),
• si f n’est pas dans l’intervalle on rejette l’hypothèse au risque de 5 %.
Exemple :
→ On effectue la simulation de 1000 d’une pièce équilibrée sur une calculatrice. On obtient 484 « Pile », soit une fréquence de 0,484. Cette valeur est elle suffisamment proche de la valeur attendue 0,5 ?
Soit X la variable aléatoire associée à la sortie de « Pile ». Les 1000 épreuves sont indépendantes, avec deux issues. La variable suit une loi binomiale

Au seuil de 95 % l’intervalle de fluctuation serait

Au risque de 5 % on accepte l’hypothèse que le générateur aléatoire de la calculatrice à bien fonctionné.
Pour trouver a et b on utilise une calculatrice comme rappelé au paragraphe 1, puis on teste quelques valeurs autour de 0,5 × 1000.
On a obtenu




D’où a = 463 et b = 531.

Fiches de cours les plus recherchées
Découvrir le reste du programme


Des profs en ligne
- 6 j/7 de 17 h à 20 h
- Par chat, audio, vidéo
- Sur les matières principales

Des ressources riches
- Fiches, vidéos de cours
- Exercices & corrigés
- Modules de révisions Bac et Brevet

Des outils ludiques
- Coach virtuel
- Quiz interactifs
- Planning de révision

Des tableaux de bord
- Suivi de la progression
- Score d’assiduité
- Un compte Parent