Lycée   >   Terminale   >   Physique Chimie   >   Transitions d'énergie électroniques et vibratoires

Transitions d'énergie électroniques et vibratoires

  • Fiche de cours
  • Quiz
  • Profs en ligne
Objectifs
Étudier les états d’énergie d’une molécule diatomique : états électroniques et vibratoires. Insister sur les ordres de grandeur des énergies mises en jeu et des domaines spectraux associés. Faire le lien avec les notions vues en spectroscopie.
1. Spectres atomiques et moléculaires
Nous avons vu dans la fiche liée aux transitions quantiques qu’un atome isolé est assimilé à un système quantique {noyau + électrons}. Dans le cadre d’états liés, ce système ne peut prendre que certaines énergies bien déterminées : c’est la quantification de l’énergie. Ces énergies correspondent aux états occupés par les électrons : on parle d’états électroniques. Dans l’exemple de l’atome d’hydrogène, ils sont donnés par .

Cet aspect est mis en évidence en provoquant des transitions électroniques, absorption et émission, qui ont pour effet de faire passer (au moins) un électron d’un état d’énergie à autre. Expérimentalement, ces transitions sont provoquées par exemple en établissant le spectre d’émission ou d’absorption de l’atome. De part la quantification de l’énergie, on obtient des spectres de raies. Pour le spectre d’émission :

 

Avec une molécule simple, comme une molécule diatomique, on ne trouve plus un spectre de raies, mais un spectre de bandes. Comment expliquer cela ?

Spectre (factice) de l’air : dioxygène et diazote
2. Etats d'énergies d'une molécule diatomique
a. Energies vibratoires
On considère une molécule de gaz diatomique. Les deux atomes, de masses et sont reliés par une liaison chimique, assimilable à un ressort. Comme avec un système masse-ressort-masse classique, cet ensemble peut vibrer.


Pour une molécule, il faut cependant utiliser la mécanique quantique pour obtenir une description fidèle aux observations expérimentales. Ce cas d’étude porte d’ailleurs le nom d’oscillateur harmonique. Les énergies de vibration de la molécule sont quantifiées, et satisfont la relation (non exigible) :


est un nombre entier, positif ou nul, servant à repérer les différents états vibrationnels. est la constante de Planck. est une pulsation (en rad/s) où est la fréquence associée (en Hz). Aussi, , avec et la longueur d’onde correspondante (en m). Comme un système masse-ressort classique, la fréquence d’oscillation s’écrit :


est la masse réduite du système (en kg) et k la constante de raideur (ou « constante de force ») de la liaison (en N/m). La fréquence dépend ainsi de la molécule étudiée. En introduisant le nombre d’onde , on a :

Molécule en eV en
0,541 4395
0,513 4138
0,387 3118
0,371 2990
0,292 2359
0,269 2170
0,196 1580
0,0701 565

L’ordre de grandeur des énergies observées est de quelques dixièmes d’eV, où . Elles sont plus faibles que les énergies mises en jeu pour les transitions électroniques. En effet, celles-ci mettent souvent en jeu des énergies de quelques eV.
b. Interprétation des spectres de bandes : les sous-niveaux vibratoires
L’énergie est une grandeur additive, y compris bien sûr en mécanique quantique. En conséquence, l’énergie du système molécule s’écrit comme la somme de l’énergie électronique (comme dans ), et de l’énergie vibratoire.


Puisque , les états vibrationnels vont en quelque sorte « s’ajouter » à la structure créée par les états électroniques. On parle alors de sous-niveaux vibratoires.



Le diagramme d’énergie permet de deviner que le nombre de transitions possibles va nettement augmenter, tout comme le nombre de longueurs d’onde émises par la molécule lors d’un spectre d’émission. En conséquence, les raies brillantes du spectre atomique se démultiplient en passant au spectre moléculaire, d’où le spectre de bandes observé.
c. D'autres sous structures : états d'énergies rotationnels (non exigible)
La molécule de gaz diatomique possède aussi une énergie rotationnelle, due à sa rotation sur elle-même. Elle est également quantifiée et donnée par la relation :
avec j entier positif ou nul

La constante K dépend de la molécule. Les valeurs rencontrées pour les états rotationnels sont encore moins énergétiques que celles des états vibrationnels. En effet, on a par exemple pour , pour , pour , etc.

On écrit donc ,
avec

Les états rotationnels vont créer des « sous-sous structures » dans le diagramme énergétique. A moins de disposer d’un appareillage de précision, les états sont trop rapprochés pour être distinguables et semblent donc former un continuum, ce qui explique là aussi le spectre de bandes de la molécule.
3. Lien avec la spectroscopie
a. La spectroscopie IR
Ce que nous avons vu pour un gaz diatomique se généralise à des molécules plus complexes. Néanmoins, au-delà de deux atomes, il y a apparitions de modes de vibrations élaborés.


Les vibrations d’allongement (stretching) sont dans l’ensemble plus énergétiques que les vibrations de déformation (bending). Les vibrations de déformation ont des nombres d’onde grosso-modo autour de alors que les vibrations stretching peuvent monter au-delà de .

En spectroscopie, la finalité est de ne provoquer que certains types d’excitations : électroniques, vibrationnelles, mais si possible pas les deux en même temps. Autrement dit, en spectroscopie IR, un rayonnement infrarouge est utilisé pour provoquer des transitions vibrationnelles, associées aux modes de vibrations décrits plus haut. La finalité est de pouvoir reconnaître les transitions et faire alors la correspondance avec les liaisons chimiques concernées, voir fiche sur la spectroscopie IR.

Remarque : comme les énergies rotationnelles sont plus basses que celles des vibrationnelles, des transitions rotationnelles peuvent intervenir dans des spectres IR (phase gazeuse), sous la forme de fines structures.
b. Bilan : domaine spectral et énergies associées
On parle de domaine spectral pour désigner les zones concernées par les différents types de spectroscopie. Le tableau ci-après associe le domaine spectral aux excitations correspondantes. La RMN n’intervient que si un champ magnétique est appliqué, voir fiche dédiée.

Domaine spectral X UV-Visible IR Ondes radio
Type d'excitation
Transitions électroniques
très énergétiques
Transitions électroniques Vibrationnelles RMN

Pour rappel, le visible se situe à des longueurs d’onde comprises en 400 et 800 nm, ce qui correspond à des énergies de 1,55 eV à 3,11 eV. De même, l’UV exploité est entre 100 nm et 400 nm, soit des énergies allant de 3,11 eV à 12,4 eV. En conséquence, les transitions électroniques étudiées concernent des énergies comprises entre 1,5 eV et 12 eV environ. Il existe des transitions électroniques très énergétiques (effet photoélectrique, fluorescence, …), avec des UV plus durs (entre 10 nm et 100 nm) et des rayons X, mais nous n’en parlerons pas.

L’infrarouge va de 800 nm à 1 mm, donc concerne des énergies de 1,24 meV à 1,55 eV. Toutefois, dans la pratique, la spectroscopie IR concerne des longueurs d’onde entre et , soit des énergies environ entre 0,05 et 0,5 eV.

Des spectres purement rotationnels peuvent être obtenus dans le domaine des micro-ondes, de 1 mm à 30 cm, soit des énergies de à 1,24 meV.
L'essentiel
L’énergie d’une molécule s’écrit comme :
: énergies des électrons de la molécule ; elles sont quantifiées. Par des transitions quantiques émission/absorption, des énergies de 1,5 eV et 12 eV sont mises en jeu : domaine spectral UV-visible.
: énergie de la molécule de part les vibrations au niveau des liaisons atomiques. Les énergies vibratoires sont aussi quantifiées. Elles donnent lieu à des sous-niveaux vibratoires au sein du diagramme énergétique de la molécule. Les énergies mises en jeu vont de 1,55 eV à 1,24 meV environ (domaine de l’infrarouge).
Les transitions vibratoires sont exploitées en spectroscopie IR.
(non exigible) : énergie rotationnelle de la molécule. Ces énergies sont également quantifiées et sont plus faibles que les énergies vibratoires (micro-ondes).

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Question 1/5

La médiane de 6 notes est 13. Cela signifie que :

Question 2/5

On a obtenu la série statistique suivante :

Combien vaut la médiane ?

Question 3/5

On a obtenu la série ci-dessous :

Quelle est la médiane de cette série ?

Question 4/5

On a relevé les tailles en cm des élèves d’une classe :

 

Parmi les propositions suivantes, laquelle est vraie ?

Question 5/5

Les notes en français de deux classes littéraires sont données dans le tableau suivant :

Quelle est la note médiane ?

Vous avez obtenu75%de bonnes réponses !

Recevez l'intégralité des bonnes réponses ainsi que les rappels de cours associés :

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Pour en savoir plus sur la gestion de vos données personnelles et pour exercer vos droits, vous pouvez consulter notre charte.

Une erreur s'est produite, veuillez ré-essayer

Consultez votre boite email, vous y trouverez vos résultats de quiz!

Découvrez le soutien scolaire en ligne avec myMaxicours

Le service propose une plateforme de contenus interactifs, ludiques et variés pour les élèves du CP à la Terminale. Nous proposons des univers adaptés aux tranches d'âge afin de favoriser la concentration, encourager et motiver quel que soit le niveau. Nous souhaitons que chacun se sente bien pour apprendre et progresser en toute sérénité ! 

Fiches de cours les plus recherchées

Physique Chimie

Dualité onde-particule : photon et onde lumineuse - longueur d'onde de de Broglie

Physique Chimie

Interférences photon par photon / particule par particule

Physique Chimie

Production d'eau potable, traitement des eaux

Physique Chimie

Elaboration, évolution et protection des matériaux

Physique Chimie

Chiralité / carbone asymétrique

Physique Chimie

Conformation et aspect énergétique

Physique Chimie

Isomérie

Physique Chimie

Formule topologique

Physique Chimie

Ondes progressives périodiques / sinusoïdales

Physique Chimie

Ondes sonores et ultrasonores