Théorème des valeurs intermédiaires pour une fonction continue strictement monotone - Cours de Mathématiques Terminale S avec Maxicours - Lycée

01 49 08 38 00 - appel gratuit de 9h à 18h (hors week-end)

Théorème des valeurs intermédiaires pour une fonction continue strictement monotone

Objectif
Exploiter le théorème des valeurs intermédiaires dans le cas où ƒ est strictement monotone pour résoudre un problème.
1. Théorème des valeurs intermédiaires
Théorème (admis)

Soit ƒ une fonction continue sur un intervalle I. Soit (a ; b) un couple de réels de I.

Pour tout réel k compris entre ƒ(a) et ƒ(b), il existe au moins un réel c appartenant à l'intervalle [a ; b] tel que ƒ(c) = k. 

Autrement dit, pour tout réel k compris entre ƒ(a) et ƒ(b), l'équation ƒ(x) = k admet au moins une solution dans l'intervalle [a ; b]. 

Exemple :

L'équation admet au moins une solution dans l'intervalle ]-2 ; 0[.
En effet, posons . Comme tout polynôme, ƒ est une fonction continue. De plus, et .

On voit sur la figure ci-dessous que la courbe d'équation  coupe l'axe des abscisses en un point sur l'intervalle ]-2 ; 0[.
 
2. Corollaire du théorème des valeurs intermédiaires : cas des fonctions continues et strictement monotones sur I
Théorème
Soit ƒ une fonction continue sur un intervalle I. Soient a et b deux points de I et k un nombre compris entre ƒ(a) et ƒ(b). De plus, on suppose que ƒ est strictement monotone sur I.
Alors il existe un unique point c compris entre a et b tel que ƒ(c) = k.
Autrement dit, l'équation ƒ(x) = k admet une unique solution comprise entre a et b.

Remarques :

• Il y a deux ajouts par rapport au théorème des valeurs intermédiaires. D'abord la stricte monotonie de ƒ. Cela signifie que ƒ est soit strictement croissante soit strictement monotone sur I. Ensuite, l'unicité de la solution.
• Le théorème se généralise au cas où ƒ est continue et strictement monotone sur un intervalle ]a ; b[, et que les limites de ƒ aux bornes sont des infinis de signes contraires (et ). On peut adapter le théorème des valeurs intermédiaires et cette généralisation aux cas [a ; b[ et ]a ; b].

Exemples :
• L'équation admet une unique solution dans l'intervalle .
En effet, la fonction tangente est continue et strictement croissante sur cet intervalle car  . De plus, et  .

• Ce tableau de variation permet de dire que la fonction g est continue et est strictement croissante sur [2 ; 10]. 0 ∈ [-1 ; 10], l’équation g(x) = 0 admet une unique solution dans [2 ; 10].

3. Applications pratiques
a. Utilisation des théorèmes dans des situations variées
Exemple :
Démontrer que l'équation cos x = x admet une solution unique dans l'intervalle ]0 ; π[.
On pose ƒ(x) = cos x - x puis on étudie les variations de la fonction ƒ.
Comme ƒ'(x) = - sin x - 1 < 0 sur et sur . Donc ƒ est strictement décroissante sur [0 ; π].
De plus, ƒ(0) = 1 > 0 et ƒ(π) = -1 - π < 0, donc ƒ(π) < 0 < ƒ(0).
Il en résulte que l'équation ƒ(x) = 0 admet une unique solution dans l'intervalle ]0 ; π[. D'où cos x = x aussi.
b. Approximation des solutions
Une fois que l'existence de solution(s) à l'équation ƒ(x) = k est établie, on peut utiliser une calculatrice pour obtenir une valeur approchée de la (des) solution(s). Il peut être utile d'introduire la fonction x → ƒ(x) - k.
Sur les calculatrices, on utilise les fonctionnalités qui, selon les modèles, se nomment « solve » ou « zeros » et se trouvent soit dans les menus accompagnant le tracé de la courbe (« graph ») soit dans le menu « Math ».
L'essentiel
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l’équation ƒ(x) = k admet une unique solution dans [a ; b].
Pour localiser cette solution, on pourra utiliser sa calculatrice.

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Découvrez
Maxicours

Des profs en ligne

Géographie

Des profs en ligne

  • 6j/7 de 17h à 20h
  • Par chat, audio, vidéo
  • Sur les 10 matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Une interface Parents

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de Cookies ou autres traceurs pour améliorer et personnaliser votre navigation sur le site, réaliser des statistiques et mesures d'audiences, vous proposer des produits et services ciblés et adaptés à vos centres d'intérêt et vous offrir des fonctionnalités relatives aux réseaux et médias sociaux.