Suites numériques : limite finie ou infinie - Maxicours

Suites numériques : limite finie ou infinie

Objectif(s)
• Définir la notion de limite d’une suite numérique.
Attention ! Une suite étant définie à partir des entiers naturels (positifs ou nul), sa limite ne peut s'étudier qu'en +∞.
1. Limite infinie
Soit u = (un) une suite numérique.

Définition 1
On dit que la suite u a pour limite quand n tend vers lorsque tout intervalle de la forme contient toutes les valeurs un à partir d’un certain rang.

Autrement dit, la suite u a pour limite quand n tend vers lorsque pour tout réel A, il existe un rang entier n0 vérifiant la proposition : .

On note , ou ou .

Illustration de la définition 1




Les suites numériques (n), (n2), (n3) et sont considérées comme les exemples usuels de suites numériques vérifiant la définition 1.

Ainsi, par exemple, .
En effet, soit A un réel quelconque.
On pose n0 le plus petit entier supérieur à .
On dispose alors de la proposition : et .
La suite (n2) vérifie bien la définition 1.

Définition 2
On dit que la suite u a pour limite quand n tend vers lorsque tout intervalle de la forme contient toutes les valeurs un à partir d’un certain rang.

Autrement dit, la suite u a pour limite quand n tend vers lorsque pour tout réel A, il existe un rang entier n1 vérifiant la proposition : .

On note , ou ou .

Remarque 
L’illustration de cette définition est similaire à celle de la définition 1. Il serait souhaitable pour vous, lecteur de cette fiche, de la faire. Cela vous permettra de tester votre compréhension de la définition 2.

Les suites numériques (-n), (-n2), (-n3) et sont considérées comme les exemples usuels de suites numériques vérifiant la définition 2.

Ainsi, par exemple, .


2. Limite finie
Soit u = (un) une suite numérique.

Définition 3
On dit que la suite u a pour limite un nombre réel L quand n tend vers lorsque tout intervalle ouvert contenant L contient toutes les valeurs un à partir d’un certain rang.

Autrement dit, la suite u a pour limite L quand n tend vers lorsque pour tout intervalle ouvert I contenant L, il existe un rang entier n2 vérifiant la proposition : .

On note   ou ou .

Illustration de la définition 3



Les suites numériques , , et sont considérées comme les exemples usuels de suites numériques vérifiant la définition 3 avec L = 0.

Ainsi, par exemple, .



3. Diverses remarques
Soit u = (un) une suite numérique.
Soit L un réel.

   • Si lim (un) = L, alors on dit quelquefois que la suite (un) converge vers le nombre L. Cela « rejoint » le sens courant du mot « converger ».
   • On démontre (avec un « bagage » mathématique plus étoffé) et on admet ici, que tout intervalle ouvert I contenant L contient un intervalle ouvert J contenant L et de centre L.

Autrement dit :
Soit I un intervalle ouvert contenant L.
Il existe un réel r > 0 tel que J = ]Lr ; L + r[ I. L est bien le centre de J.

Avec cette remarque, on peut alors dire que : (un) converge vers L lorsque pour tout réel r > 0, il existe un rang entier n2 vérifiant la proposition : .

Or :

               

                .

Remarque
Cette nouvelle définition est donnée à titre de « culture mathématique » ; MAIS sa connaissance n’est pas exigible en TS.

• Il existe des suites qui n’ont pas de limite, c’est-à-dire qui ne vérifient aucune des trois définitions précédentes. C’est le cas de la suite ((-1)n). Cette suite prend alternativement les valeurs 1 ou -1 selon que n est pair ou impair. Les trois définitions précédentes sont alors mises à défaut.
• On dit quelquefois que la suite (un) diverge lorsqu’elle a une limite infinie OU BIEN lorsqu’elle n’a pas de limite.

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

quote blanc icon

Découvrez Maxicours

Exerce toi en t’abonnant

Des profs en ligne

  • 6 j/7 de 17 h à 20 h
  • Par chat, audio, vidéo
  • Sur les matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Un compte Parent

Inscrivez-vous à notre newsletter !

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Conformément à la Loi Informatique et Libertés n°78-17 du 6 janvier 1978 modifiée, au RGPD n°2016/679 et à la Loi pour une République numérique du 7 octobre 2016, vous disposez du droit d’accès, de rectification, de limitation, d’opposition, de suppression, du droit à la portabilité de vos données, de transmettre des directives sur leur sort en cas de décès. Vous pouvez exercer ces droits en adressant un mail à : contact-donnees@sejer.fr. Vous avez la possibilité de former une réclamation auprès de l’autorité compétente. En savoir plus sur notre politique de confidentialité