Emission et absorption quantiques
Plus tard, la mécanique quantique, avec l’équation de Schrödinger, parvint à modéliser l’atome d’hydrogène, en tant que système {proton + électron}.


Conventionnellement, l’énergie nulle est celle de l’état où le proton et l’électron sont au repos et ne sont pas liés (hydrogène ionisé). Une énergie positive correspond à un état non lié, où ladite énergie est l’énergie cinétique de l’électron par rapport au proton. Ces états non liés forment un continuum, voir le diagramme d’énergie de l’atome d’hydrogène ci-dessous.
Une différence majeure avec la mécanique de Newton est que la mécanique quantique est une théorie probabiliste. Ci-dessous à droite, on a représenté par un nuage de points la densité de probabilité de l’électron dans l’atome d’hydrogène, pour l’état fondamental. En un lieu donné, plus il y a de points, plus on a de chance d’y trouver l’électron. Quelle différence avec le modèle planétaire de Rutherford ! Le proton, invisible, est au centre du nuage.

Pour rappel, l’électronvolt est une unité d’énergie adaptée à la physique de l’atome, définie comme







Absorption
Un électron est dans un état d’énergie, nommé ici





Si l’énergie du photon est suffisante, il peut ioniser l’atome, en amenant l’électron dans le continuum des états non liés. Une part de l’énergie du photon sert ainsi à ioniser l’atome, l’énergie restante est emportée par l’électron sous forme d’énergie cinétique.
Emission spontanée
Quand un électron est dans un état excité,



Remarque : Nous verrons dans la fiche sur le LASER qu’il existe un autre type d'émission, l’émission stimulée, induite par un photon incident.
Spectre d’émission :
Le montage expérimental permettant d'établir un spectre d’émission est schématisé ci-dessous. Une circulation forcée d’électrons dans le gaz étudié provoque des chocs avec les atomes. Les électrons de ces derniers passent alors sur des états excités.

Rapidement (typiquement


Chaque type d’atome possède des niveaux d’énergie qui lui sont propres. Le spectre d’un atome est ainsi sa carte d’identité, ce qui permet de l’identifier. D’autre part, la lumière produite par un spectre d’émission est également exploitable en tant que source lumineuse. Les lampes à vapeur de sodium sont employées par exemple pour l’éclairage urbain. Elles émettent une lumière jaune caractéristique.
Spectre d’absorption :
Pour obtenir un spectre d’absorption, une lumière blanche, comportant toutes les longueurs d’onde du visible, est envoyée sur les atomes à étudier (gaz).

Certains photons (pouvant induire des transitions électroniques) sont absorbés par ces atomes. Rapidement, par émission spontanée, ils seront réémis, mais selon des directions aléatoires. Pour l’observateur, il y aura un manque d’intensité pour ces longueurs d’onde absorbées, ce qui se traduira par des raies noires sur le spectre obtenu.

Remarque : pour un même type d’atomes, les raies sombres se situent bien entendu au même endroit que les raies brillantes du spectre d’émission.

A température donnée, les atomes (gaz) possèdent une vitesse, du fait de leur agitation thermique. Si un atome et un photon se propageant en sens opposés se rencontrent et s’il y a absorption du photon par l’atome, la vitesse de ce denier diminue, par conservation de la quantité de mouvement :




Après, quand l’atome émet un photon par émission spontanée, sa vitesse est également affectée, par effet de recul comme avec une arme à feu. Toutefois, comme l’émission du photon se fait dans une direction aléatoire, sa contribution est nulle en moyenne.

Deux faisceaux LASER sont émis dans des sens opposés sur une population d’atomes identiques. La fréquence des photons est égale à


Quand un atome va à la rencontre d’un photon, il peut « voir » celui-ci avec une fréquence

Comme les atomes ne se déplacent pas selon un axe mais en 3D, il faut 6 faisceaux LASER au total, soit deux par dimension. L’expérience du refroidissement d’atomes par LASER a valu le prix Nobel de Physique en 1997 à Claude Cohen-Tannoudji, Steven Chu et William Daniel Phillips. Dans cette expérience, par des améliorations du procédé, il fut descendu à des températures de l’ordre du nano-Kelvin au dessus du zéro absolu (0 K).

Dans un atome, les électrons peuvent passer d’un état d’énergie à un autre par des transitions quantiques. Dans le cadre de l’interaction lumière/matière, ces transitions sont l’absorption et l’émission. Elles mettent en jeu le photon d’énergie


Fiches de cours les plus recherchées
Découvrir le reste du programme

Des profs en ligne
- 6j/7 de 17h à 20h
- Par chat, audio, vidéo
- Sur les 10 matières principales

Des ressources riches
- Fiches, vidéos de cours
- Exercices & corrigés
- Modules de révisions Bac et Brevet

Des outils ludiques
- Coach virtuel
- Quiz interactifs
- Planning de révision

Des tableaux de bord
- Suivi de la progression
- Score d’assiduité
- Une interface Parents