Savoir utiliser la calculatrice pour représenter une loi normale - Maxicours

Savoir utiliser la calculatrice pour représenter une loi normale

On utilise la calculatrice pour les résultats.

Pour une bonne compréhension des calculs suivants, il faut avoir en tête le schéma ci-contre.



On pose a1 < μ < a2.
La calculatrice (un logiciel) donne la valeur de p(a < X < b) pour a et b deux nombres quelconques.
Sauf la TI-Nspire, les calculatrices ne donnent ni p(X < a) ni p(X > a).

Exemple d’utilisation

p(X < a1) avec a1 < μ.
C’est A1 qui vaut 0,5 - A2. Comme A2 = A3, A1 = 0,5 - A3 = 0,5 - p(0 < X < a2).

Pour les calculs qui suivent on considère la loi μ = 2 et σ = 3.

1. À partir d'une TI 82 stats (ou 83-84)
► Calcul de p(a < X < b).

Exemple : p(-5,5 < X < 2).
Dans le menu « distrib », choix 2 (normalFRép).
Écrire : normalFRép(- 5.5,2,2,3) puis valider.
Résultat : 0,4937.

► Calcul de p(X = a).

P(X = a) = 0. C’est une loi de probabilité à densité.

► Calcul de p(X < a).
ATTENTION, pour p(X < a), il faut vérifier :
- si a < μ, dans ce cas p(X < a) = 0,5 - p(a < X < μ) ;
- si a > μ, dans ce cas p(X < a) = 0,5 + p(μ < X < a).

• Exemple 1 : p(X < 0,4).
On a : 0,4 < 2, on est dans le cas où a < μ.
Calculer 0,5 - p(a < X < μ), soit 0,5 - p(0,4 < X < 2) qui se calcule comme précédemment.
Résultat : 0,2969.

• Exemple 2 : p(X < 4,7).
On a : 4,7 > 2, on est dans le cas où a > μ.
Calculer 0,5 + p(μ < X < a), soit 0,5 + p(2 < X < 4,7) qui se calcule comme précédemment.
Résultat : 0, 8159.

► Calcul de p(X > a).

ATTENTION, pour p(X > a), il faut vérifier :
- si a < μ, dans ce cas p(X > a) = 0,5 + p(a < X < μ) ;
- si a > μ, dans ce cas p(X > a) = 0,5 - p(μ < X < a).

• Exemple 1 : p(X > 0,4).
On a : 0,4 < 2, on est dans le cas où a < μ.
Calculer 0,5 + p(a < X < μ), soit 0,5 + p(0,4 < X < 2) qui se calcule comme précédemment.
Résultat : 0,2969.

• Exemple 2 : p(X > 4,7).
On a : 4,7 > 2, on est dans le cas où a > μ.
Calculer 0,5 - p(μ < X < a), soit 0,5 - p(2 < X < 4,7) qui se calcule comme précédemment.
Résultat : 0,18406.


► Calcul de p(X < x) = p.

C'est une loi à distribution de densité de probabilité, donc p(X a) = p(X < a).
Il faut trouver un nombre x tel que sa probabilité soit une valeur donnée p (σ, μ connus).

Exemple : p(X < x) = 0,63.
Dans le menu « distrib », choix 3 (Fracnormale). Écrire : Fracnormale(0.63,2,3) puis valider.
Résultat : 2,99556.
2. À partir d'une Casio Graph 35+
► Calcul de p(a < X < b).

Exemple : p(-5,5 < X < 2).
Touche menu, aller sur STATS, F5 pour DIST, choix F1 pour NORM, et F2 pour Ncd.
Donner la plus petite valeur (valider), la plus grande (valider), écrire 3 en σ (valider) et 2 en μ (valider) puis « execute » puis F1.
Résultat : 0,4937.

► Calcul de p(X = a).

p(X = a) = 0. C’est une loi de probabilité à densité.

► Calcul de p(X < a).

ATTENTION, pour p(X > a), il faut vérifier :
- si a < μ, dans ce cas p(X > a) = 0,5 - p(a < X < μ) ;
- si a > μ, dans ce cas p(X > a) = 0,5 + p(μ < X < a).

• Exemple 1 : p(X < 0,4).
On a : 0,4 < 2, on est dans le cas où a < μ.
Calculer 0,5 - p(a < X < μ), soit 0,5 - p(0,4 < X < 2) qui se calcule comme précédemment.
Résultat : 0,2969.

• Exemple 2 : p(X < 4,7).
On a : 4,7 > 2, on est dans le cas où a > μ.
Calculer 0,5 + p(μ < X < a), soit 0,5 + p(2 < X < 4,7) qui se calcule comme précédemment.
Résultat : 0,8159.

► Calcul de p(X > a).

ATTENTION, pour p(X > a), il faut vérifier :
- si a < μ, dans ce cas p(X > a) = 0,5 + p(a < X < μ) ;
- si a > μ, dans ce cas p(X > a) = 0,5 - p(μ < X < a).

• Exemple 1 : p(X > 0,4).
On a : 0,4 < 2, on est dans le cas où a < μ.
Calculer 0,5 + p(a < X < μ), soit 0,5 + p(0,4 < X < 2) qui se calcule comme précédemment.
Résultat : 0,2969.

• Exemple 2 : p(X > 4,7).
On a : 4,7 > 2, on est dans le cas où a > μ.
Calculer 0,5 - p(μ < X < a), soit 0,5 - p(2 < X < 4,7) qui se calcule comme précédemment.
Résultat : 0,18406.

► Calcul de p(X < x) = p.

C'est une loi à distribution de densité de probabilité, donc p(X a) = p(X < a).
Il faut trouver un nombre x tel que sa probabilité soit une valeur donnée p (σ, μ connus).

Exemple : p(X < x) = 0,63.
Touche menu, aller sur STATS, F5 pour DIST, choix F1 pour NORM, et F3 pour InvN.
Écrire la valeur (valider), écrire 3 en σ (valider) et 2 en μ (valider) « execute » puis F1.
Résultat : 2,9956.
3. À partir d'une TI-Nspire
► Calcul de p(a < X < b).

Exemple : p(-5,5 < X < 2).
Appuyer sur menu, choix 5 probabilités, encore 5 Distributions, puis 2 NormalFDR.
Remplir avec les deux valeurs, puis celles de μ et σ valider.
Cela affiche : normCdf(−5.5,2,2,3).
Résultat : 0,4937.

► Calcul de p(X = a).

p(X = a) = 0. C’est une loi de probabilité à densité.

► Calcul de p(X < a).

• Exemple 1 : p(X < 0,4).
Il suffit d’écrire - ∞ pour la borne inférieure : normCdf(−∞,0.4,2,3).
Résultat : 0,2969.

• Exemple 2 : p(X < 4,7).
Il suffit d’écrire - ∞ pour la borne inférieure : normCdf(−∞,4.7,2,3).
Résultat : 0, 8159.

► Calcul de p(X > a).

• Exemple 1 : p(X > 0,4).
Il suffit d’écrire +∞ pour la borne supérieure : normCdf(0.4,+∞,2,3).
Résultat : 0,70309.

• Exemple 2 : p(X > 4,7).
Il suffit d’écrire +∞ pour la borne supérieure : normCdf(4.7,+∞,2,3).
Résultat : 0,18406.


► Calcul de p(X < x) = p.

Exemple : p(X < x) = 0,63.
Appuyer sur menu, choix 5 probabilités, encore 5 Distributions, puis 3 Inverse Normale. Remplir avec la valeur, ainsi que celles de σ, et μ, puis valider.
Cela affiche invNorm(0.63,2,3).
Résultat : 2,99556.

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

quote blanc icon

Découvrez Maxicours

Exerce toi en t’abonnant

Des profs en ligne

  • 6 j/7 de 17 h à 20 h
  • Par chat, audio, vidéo
  • Sur les matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Un compte Parent

Inscrivez-vous à notre newsletter !

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Conformément à la Loi Informatique et Libertés n°78-17 du 6 janvier 1978 modifiée, au RGPD n°2016/679 et à la Loi pour une République numérique du 7 octobre 2016, vous disposez du droit d’accès, de rectification, de limitation, d’opposition, de suppression, du droit à la portabilité de vos données, de transmettre des directives sur leur sort en cas de décès. Vous pouvez exercer ces droits en adressant un mail à : contact-donnees@sejer.fr. Vous avez la possibilité de former une réclamation auprès de l’autorité compétente. En savoir plus sur notre politique de confidentialité