Multiplication d'un vecteur par un réel, colinéarité - Cours de Mathématiques Seconde avec Maxicours - Lycée

01 49 08 38 00 - appel gratuit de 9h à 18h (hors week-end)

Multiplication d'un vecteur par un réel, colinéarité

Objectif(s)
Multiplication d'un vecteur par un réel -
Vecteurs colinéaires -
Relation liant les coordonnées de deux vecteurs colinéaires
1. Multiplication d'un vecteur par un réel
Définition

désigne un vecteur et k est un réel.
Le produit du vecteur par le réel k est un vecteur noté k tel que :
• si =où k = 0, alors k= ;
• si et k > 0, alors et kont la même direction, le même sens et ;
• si et k < 0, alors et kont la même direction, des sens opposés et .

Exemple

est un vecteur donné. Les points A, B, C, D, E et F sont tels que :
; ; .


, 3et -2ont la même direction (celle du vecteur).

(AB), (CD) et (EF) sont parallèles.

et -2sont de sens opposés. et sont de sens opposés.

; CD = 3AB.

; EF = 2AB.

Propriétés

Quels que soient les vecteurs et et les réels k et k' :
équivaut à k = 0 ou ;

;

;

.
2. Vecteurs colinéaires
a. Définition
et sont colinéaires signifie que l'un est de produit de l'autre par un réel k.

Conséquences immédiates

• Le vecteur nul est colinéaire à tout vecteur , car quel que soit , ;
et sont colinéaires signifie que l'un est le produit de l'autre par un nombre réel .

Ainsi, deux vecteurs non nuls sont colinéaires si et seulement si ils ont la même direction.
b. Applications
 Vecteurs colinéaires et parallélisme



et sont colinéaires équivaut à :
et ont la même direction équivaut à :
(AB) // (CD).

Exemple 1
ABC est un triangle. M et N sont tels que : et .
On en déduit que (MN) et (BC) sont parallèles.

En effet, .

On en déduit que et sont colinéaires, donc les droites (MN) et (BC) sont parallèles.

Exemple 2
ABCD est un trapèze et (EF) est parallèle aux bases.

Les droites (AB), (FE) et (CD) sont parallèles, donc :
et sont colinéaires ;
et sont colinéaires ;
et sont colinéaires.

Déductions possibles :
• Il existe un réel a tel que , et sont de même sens donc a > 0 et ;
• Il existe un réel b tel que , et sont de même sens donc b < 0 et .

Vecteurs colinéaires et alignement



et sont colinéaires équivaut à :
et ont la même direction équivaut à :
(AB) // (AC) équivaut à :
A, B et C sont alignés.

Exemple 1
Si M, N sont 2 points donnés, comment placer le point R tel que ?
est le produit de par donc par définition, et sont colinéaires.

On en déduit que :
• M, N et R sont alignés ;
donc et sont de sens opposés ;
.



Exemple 2
O et I sont deux points donnés.
Quel que soit , il existe un réel a tel que .
3. Relation liant les coordonnées de deux vecteurs colinéaires
Le plan étant muni d'un repère , deux vecteurs et sont colinéaires si et seulement si .

Exemple 1
Soit dans un repère du plan les vecteurs et .
et sont colinéaires car .

Exemple 2
Soit dans un repère du plan les points A(-2 ; 1) et B (1 ; 2).

M(x ; y) ∈ (AB) si et seulement si .

En effet, M ∈ (AB) si et seulement si et sont colinéaires.

et sont colinéaires si et seulement si ou .

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Découvrez
Maxicours

Des profs en ligne

Géographie

Aidez votre enfant à réussir en mathématiques grâce à Maxicours

Des profs en ligne

  • 6j/7 de 17h à 20h
  • Par chat, audio, vidéo
  • Sur les 10 matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Une interface Parents