Fiche de cours

Le vocabulaire de la logique- Première- Mathématiques

Lycée   >   Premiere, Terminale   >   Mathématiques   >   Le vocabulaire de la logique- Première- Mathématiques

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
  • Utiliser les connecteurs logiques « et », « ou » et la négation « non ».
  • Reconnaitre et utiliser les symboles logiques.
  • Reconnaitre et utiliser les symboles des quantificateurs.
Points clés
  • Connecteurs logiques :
    • Et : remplir les deux conditions.
    • Ou : Remplir une des conditions.
    • Non : Condition inverse.
  • Implication : P⇒Q signifie que si P est vraie alors Q est vraie.
  • Équivalence : P⇔Q signifie que si P est vraie alors Q est vraie et si Q est vraie alors P est vraie.
  • Vocabulaire et symbole :
    • signifie « quel que soit ».
    • signifie « il existe ».
Pour bien comprendre

Avoir des notions en géométrie plane pour bien comprendre les exemples.

1. Connecteurs logiques et négation
a. Connecteurs logiques
OU

Une proposition « P ou Q » est vraie si P est vérifiée ou si Q vérifiée.

Exemple
P : « Ses côtés opposés sont égaux »
Q : « Ses côtés opposés sont parallèles »
Un quadrilatère est un parallélogramme si « P ou Q » , c’est-à-dire si ses côtés opposés sont égaux ou si ses côtés opposés sont parallèles.
Remarque
Une proposition « P ou Q » est fausse lorsque P et Q sont toutes les deux fausses.
ET

Une proposition « P et Q » est vraie si à la fois P et Q sont vérifiées.

Exemple
P : « Ses quatre côtés sont égaux »
Q : « Ses diagonales sont de même longueur »
Un quadrilatère est un carré si « P et Q » , c’est-à-dire si ses quatre côtés sont égaux et si ses diagonales sont de même longueur.
Remarque
Une proposition « P et Q » est fausse lorsque P ou Q est fausse.
b. Négation
Non

La proposition « non P » est vraie lorsque la proposition P est fausse.

Remarque
Une proposition « non P » est fausse lorsque P est vraie.
Exemple
P : « Le triangle est rectangle »
Non P : « Le triangle n’est pas rectangle »
2. Implication et équivalence
a. Implication

P implique Q (noté « P ⇒ Q ») :
Si la proposition P est vraie alors la proposition Q est vraie.

Remarque
Si la proposition Q est vraie, cela n’implique pas toujours Q ⇒ P.
Exemple
P : « L’individu choisi est un parisien »
Q : « L’individu choisi est un français »
P ⇒ Q : Si l’individu choisi est un parisien alors il est français.

Par contre, Q ⇏ P : Si l’individu choisi est français, il n’est pas forcément parisien.
b. Équivalence

P est équivalent à Q (noté « P ⇔ Q ») :
Si la proposition P est vraie alors la proposition Q est vraie. (P ⇒ Q)
Si la proposition Q est vraie, alors la proposition P est vraie également. (Q ⇒ P)

Remarque
Dans un théorème, l’équivalence se présente sous la forme « P est vraie si et seulement si Q est vraie ».
Exemple
Dans un triangle ABC,
P : « AB2 = AC2 + BC2 »
Q : « Le triangle ABC est rectangle en C »
P ⇒ Q : Si AB2 = AC2 + BC2 alors le triangle ABC est rectangle en C
Q ⇒ P : Si le triangle ABC est rectangle alors AB2 = AC2 + BC2
P ⇒ Q et Q ⇒ P donc P ⇔ Q
c. Condition nécessaire et suffisante
Condition nécessaire

P est vraie si Q est vraie c’est-à-dire P ⇒ Q.
Q est une condition nécessaire à P.

Condition suffisante

Si la proposition Q est vraie, alors la proposition P est vraie également c’est-à-dire Q ⇒ P.
Q est une condition suffisante à P.

Exemple
Q : « ABC est un triangle isocèle » est une condition nécessaire pour que P : « ABC est un triangle équilatéral » soit vraie.
Q est nécessaire à P.
P : « ABC est un triangle équilatéral » est une condition suffisante pour que Q : « ABC est un triangle isocèle » soit vraie.
P est suffisante à Q.
Exemple non mathématique
A : « Le fruit est un agrume » est une condition nécessaire pour que O : « Le fruit est une orange » soit vraie.
A est nécessaire à O.
O : « Le fruit est une orange » est une condition suffisante pour que A : « Le fruit est un agrume » soit vraie.
O est suffisante à A.
3. Quantificateurs
a. « Pour tout », « Quel que soit »

Les quantificateurs « Pour tout » ou « Quel que soit » sont notés par le symbole .
x, P est vraie. Cela signifie que quel que soit l’élément (d’un l’ensemble) choisi, la propriété est vraie.

Exemple
Soit n un nombre entier,
n, 2n est un nombre pair.
Cela se lit : Quel que soit (ou Pour tout) n, 2n est un nombre pair.
b. « Il existe »

Le quantificateur « Il existe » est noté .
x, tel que P est vraie.
Cela signifie qu’il existe un élément (d’un ensemble) qui rend la propriété P vraie.

Remarque
En écrivant ∃! cela signifie «Il existe un unique».
Exemple
Soit n un nombre entier et P : « n est divisible par 3 ».
n, tel que P est vrai.
Cela se lit : Il existe un nombre n, tel que n est divisible par 3.
Par exemple : 9, 12, 1002,...
Exemple
Soit n un nombre entier et P : « n= 9 ».
∃!n, tel que n= 9.
Cela se lit : Il existe un unique nombre entier n tel que n= 9.
C’est = 3.

Évalue ce cours !

 

Découvrez le soutien scolaire en ligne avec myMaxicours

Le service propose une plateforme de contenus interactifs, ludiques et variés pour les élèves du CP à la Terminale. Nous proposons des univers adaptés aux tranches d'âge afin de favoriser la concentration, encourager et motiver quel que soit le niveau. Nous souhaitons que chacun se sente bien pour apprendre et progresser en toute sérénité ! 

Fiches de cours les plus recherchées

Mathématiques

Cercle trigonométrique et radian

Mathématiques

Cosinus et sinus d'un réel, d'un angle orienté

Mathématiques

Parabole représentative d'une fonction polynôme de degré 2

Mathématiques

Listes en Python : application aux statistiques et probabilités- Première- Mathématiques

Mathématiques

Listes en Python : application aux suites et aux fonctions- Première- Mathématiques

Mathématiques

Listes en Python : application à la géométrie plane- Première- Mathématiques

Mathématiques

Bases et repères de l'espace

Mathématiques

Coordonnées dans une base et applications

Mathématiques

Les suites numériques : comparaison, théorème des gendarmes

Mathématiques

Les limites de fonctions usuelles