Définitions et notations ensemblistes
- Fiche de cours
- Quiz
- Profs en ligne
- Videos
- Application mobile
- Connaitre le vocabulaire des ensembles : ensemble, élément, appartenance, couple, inclusion, intersection, réunion, complémentaire, partition, produit cartésien.
- Savoir utiliser ce vocabulaire sur des exemples pris de différentes situations : intervalles, évènements en probabilités.
- Probabilités simples
- Intervalles
- Notion d’ensemble
Un élément est le nom donné à un objet appartenant à un ensemble, il est noté avec une lettre minuscule par exemple a.
On peut désigner un ensemble de 3 façons :
- En extension : on liste ses éléments entre 2 accolades (quand cela est possible) ;
- En compréhension : on donne une propriété caractérisant ses éléments : par exemple « les entiers naturels inférieurs à 10 » ;
- Par un diagramme : on met à l’intérieur les éléments de l’ensemble.
E = {0 ; 1 ; 2 ; 3} E est un ensemble donné en extension (dans les accolades, l’ordre n’a pas d’importance). Ses éléments sont 0, 1, 2, et 3.
L’ensemble des réels strictement positifs est l’intervalle ]0 ; +∞[. C’est un ensemble donné en compréhension : on a donné une propriété de ses éléments.
L’ensemble représenté ci-dessous est désigné par un cercle à l’intérieur duquel on a mis les éléments.

1 ∈ E mais 4 ∉ E.
- Singleton : un ensemble formé d’un seul élément est un singleton ;
- Paire : un ensemble formé de 2 éléments ;
- Ensemble vide : un ensemble qui n’a pas d’éléments et on le note Ø.
A = {a} est un singleton.
B ensemble des diviseurs de 7 est une paire car B = {1 ; 7}.

Dans le cas des ensembles de nombres, on a

Tous les entiers naturels sont des entiers relatifs et sont des réels.

L’ensemble hachuré est A ∩ B.
Soient A l’ensemble des diviseurs de 4 et B l’ensemble des diviseurs de 6.
On a A = {1 ; 2 ; 4} et B = {1 ; 2 ; 3 ; 6}.
Alors les éléments communs à A et à B sont 1 et 2 donc A ∩ B = {1 ; 2}.

Tout ce qui est coloré est l’ensemble A U B.
Reprenons les ensembles A et B précédents : on a A U B = {1 ; 2 ; 3 ; 4 ; 6}.
On appelle « complémentaire de A dans E » l’ensemble des éléments de E qui ne sont pas dans A. On le note Ā ou encore EA.

Tout ce qui est coloré est Ā.
(3 ; 4) est différent du couple (4 ; 3).
On utilise cette notation pour les coordonnées d’un point ou d’un vecteur et pour les solutions d’un système S = {(2 ; 1) ; (3 ; 4)}.
Attention
(1 ; 2) n’est pas la paire
E = {1 ; 2} et n’est pas non
plus l’intervalle [1 ; 2].
Les parenthèses, les crochets et les accolades
ont des significations différentes, il faut bien
réfléchir quand on les utilise.
- aucune des parties n’est vide ;
- ils sont deux à deux disjoints (leur intersection est vide) ;
- leur réunion est l’ensemble E.

Ici A , B et C forment une partition de E.
Soit E l’ensemble des issues lors d’une expérience aléatoire comme le lancer d’un dé. E = {1 ; 2 ; 3 ; 4 ; 5 ; 6}
Soient P l’ensemble des nombres pairs de E, et I l’ensemble des nombres impairs. On a P = {2 ; 4 ; 6} et I = {1 ; 3 ; 5}.
Ainsi, P et I forment une partition de E car ils ne sont pas vides, P ∩ I = Ø et P U I = E.
L’ensemble R × R est le carré cartésien de R, c’est l’ensemble des couples (




On peut appliquer les définitions
précédentes aux cas particuliers des
intervalles de que nous avons vus en seconde.
On peut trouver I ∩ J = [5 ; 6] : ce sont les réels qui appartiennent à I et à J.
De même, I U J = [4 ; +∞[ est la réunion de I et de J.
I et J ne sont pas disjoints car leur intersection n’est pas vide.
Le complémentaire de J dans

On peut appliquer les définitions précédentes aux cas particuliers des évènements en probabilité que nous avons vus en seconde.
Soit l’expérience aléatoire du lancer de dé, soit Ω l’ensemble des issues possibles de l’expérience. On a Ω = {1 ; 2 ; 3 ; 4 ; 5 ; 6}.
On définit les évènements I = « obtenir un multiple de 3 » et J = « obtenir un nombre impair ». On a I = {3 ; 6} et J = {1 ; 3 ; 5}.
I ∩ J = {3}. Ce sont les issues qui appartiennent à I et à J.
I U J = {1 ; 3 ; 5 ; 6}. C’est la réunion de I et de J.
I et J ne sont pas disjoints car leur intersection n’est pas vide.
Le complémentaire de J dans Ω est l’ensemble J = {2 ; 4 ; 6}.
I et J ne forment pas une partition de Ω.
Vous avez obtenu75%de bonnes réponses !