Variations et extrémums d'une fonction- Première- Mathématiques - Maxicours

Variations et extrémums d'une fonction

Objectif
  • Dresser le tableau de variation d’une fonction à partir de sa courbe représentative.
  • Déterminer graphiquement les extrémums d’une fonction sur un intervalle.
Points clés
  • est croissante sur un intervalle signifie que pour tout et de , si , alors .
  • est décroissante sur un intervalle signifie que pour tout et de , si , alors .
  • est constante sur un intervalle signifie que pour tout et de , on a .
  • Pour résumer les variations d’une fonction sur son domaine de définition, on dresse un tableau de variation. Une flèche montante indique la croissance et une flèche descendante indique la décroissance.
  • Le maximum de sur est la plus grande valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Le minimum de sur est la plus petite valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Un extrémum est un maximum ou un minimum.
Pour bien comprendre
  • Ensemble de définition d’une fonction
  • Courbe représentative d’une fonction 
1. Sens de variation d'une fonction
a. Défintions

Soit un intervalle et une fonction définie sur .

est croissante sur un intervalle signifie que pour tout et de , si , alors .
Exemple
La fonction représentée ci-dessous est strictement croissante sur l’intervalle .

est décroissante sur un intervalle signifie que pour tout et de , si , alors .
Exemple
La fonction représentée ci-dessous est strictement décroissante sur l’intervalle .

Remarque
De manière générale, on dit qu’une fonction est monotone sur un intervalle lorsqu’elle est croissante ou décroissante sur l’intervalle .
est constante sur un intervalle signifie que pour tout et de , on a .
Exemple
La fonction représentée ci-dessous est constante sur l’intervalle .

b. Tableau de variation

Pour résumer les variations d’une fonction sur son domaine de définition, on dresse un tableau de variation.

Une flèche montante indique la croissance et une flèche descendante indique la décroissance.
Exemple
Voici la représentation graphique d’une fonction définie sur l’intervalle , elle est décroissante sur et croissante sur . De plus, la courbe passe par les points de coordonnées , et .

On a donc le tableau de variation suivant :

2. Extrémums d'une fonction f sur un intervalle

Soit une fonction définie sur un intervalle .

  • Le maximum de sur est la plus grande valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Le minimum de sur est la plus petite valeur de f(x) pour appartenant à . On a alors pour tout de , .
  • Un extrémum est un maximum ou un minimum.
Remarque
Lorsqu’on parle de minimum ou de maximum, on doit toujours préciser sur quel intervalle on travaille.
Exemple 1
Voici la représentation graphique d'une fonction  :

Sur l'intervalle :
  • le minimum de est 1, atteint pour  ;
  • le maximum de est 5, atteint pour .
Sur l'intervalle  :
  • le minimum de est 2, atteint pour  ;
  • le maximum de est 5, atteint pour .
Exemple 2
Voici le tableau de variation d'une fonction  :

Sur l'intervalle , le maximum de est 2, atteint pour , et le minimum est –2, atteint pour .

Vous avez déjà mis une note à ce cours.

Découvrez les autres cours offerts par Maxicours !

Découvrez Maxicours

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

quote blanc icon

Découvrez Maxicours

Exerce toi en t’abonnant

Des profs en ligne

  • 6 j/7 de 17 h à 20 h
  • Par chat, audio, vidéo
  • Sur les matières principales

Des ressources riches

  • Fiches, vidéos de cours
  • Exercices & corrigés
  • Modules de révisions Bac et Brevet

Des outils ludiques

  • Coach virtuel
  • Quiz interactifs
  • Planning de révision

Des tableaux de bord

  • Suivi de la progression
  • Score d’assiduité
  • Un compte Parent

Inscrivez-vous à notre newsletter !

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Conformément à la Loi Informatique et Libertés n°78-17 du 6 janvier 1978 modifiée, au RGPD n°2016/679 et à la Loi pour une République numérique du 7 octobre 2016, vous disposez du droit d’accès, de rectification, de limitation, d’opposition, de suppression, du droit à la portabilité de vos données, de transmettre des directives sur leur sort en cas de décès. Vous pouvez exercer ces droits en adressant un mail à : contact-donnees@sejer.fr. Vous avez la possibilité de former une réclamation auprès de l’autorité compétente. En savoir plus sur notre politique de confidentialité