Fiche de cours

Fonctions affines

Collège   >   5eme, 4eme, 3eme   >   Mathématiques   >   Fonctions affines

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
Parmi les situations qui ne relèvent pas de la proportionnalité, on peut en modéliser certaines par des fonctions dont la représentation graphique est une droite : ce sont les fonctions affines.
Qu’est-ce-qu’une fonction affine ? Quelle est sa représentation graphique ? Comment détermine-t-on graphiquement ou par calculs, des images et des antécédents par une fonction affine ?
1. Définition d'une fonction affine
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés).

On notera cette fonction de manière équivalente :   f : x → ax + b    ou   f(x) = ax + b

Remarque : une fonction linéaire est une fonction affine particulière. Dans ce cas : b = 0.

Exemples :
• la fonction affine f telle que a = 5 et b = –3 se note   f : x → 5x – 3   ou   f(x) = 5x – 3
• la fonction affine g , de coefficients a = et b = , se note   g : xx +   ou   g(x) = x +
2. Calculs avec des fonctions affines
a. Images et antécédents par une fonction affine
Exemple 1 : Déterminer l’image de –5 et 0 par la fonction f : x → 5x – 3

• On a f(–5) = 5 × (–5) – 3 = –28 . Donc l’image de par f est –28.

• De même, f(0) = 5 × (0) – 3. Donc l’image de 0 par f est -3.


Exemple 2 :
Déterminer les antécédents de 7 et de –3 par la fonction f : x → 5x – 3

• Il s’agit de trouver le nombre x tel que f(x) = 7
Or f(x) = 5x – 3. Il faut donc résoudre l'équation 5x – 3 = 7 ;  
donc  5x = 7 + 3 = 10 ;   soit   x = = 2
L’antécédent de 7 par f est 2.

• De même, il s’agit de trouver le nombre x tel que f(x) = –3
Il faut maintenant résoudre l'équation 5x – 3 = –3 ;
donc 5x = 3 – 3 = 0 ; soit x = 0
L’antécédent de –3 par f est 0.

Remarque : Par une fonction affine de coefficient a non nul, tout nombre possède un unique antécédent.
b. Détermination d'une fonction affine
Exemple : Déterminer la fonction affine h telle que h(1) = 8 et h(–2) = –1

h est une fonction affine, donc il existe des coefficients a et b tels que :  h(x) = ax + b

Donc h(1) = a × 1 + b = a + b ;   or h(1) = 8   donc   a + b = 8
De même, h(–2) = –2a +b ;   or h(–2) = –1   donc   –2a + b = –1

On en conclut que a et b sont les solutions du système d'équations :

La résolution de ce système d’équations donne : a = 3 et b = 5.
En effet : 3 + 5 = 8 et –2×3 + 5 = –1

La fonction affine h est donc définie par h(x) = 3x + 5
3. Représentation graphique d'une fonction affine
La représentation graphique d’une fonction affine est une droite.
L’équation de la droite est : y = ax + b
Le nombre a est appelé le coefficient directeur de cette droite.
Le nombre b est appelé l'ordonnée à l'origine

Exemple :


Remarques :
• Le nombre b est appelé "ordonnée à l’origine" car, pour toute fonction affine,
f(0) = a × 0 + b = b
• La droite d’équation y = ax représentant la fonction linéaire f(x) = ax est parallèle à la droite d'équation y = ax +b représentant la fonction linéaire f(x) = ax + b.

 


Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Le service propose une plateforme de contenus interactifs, ludiques et variés pour les élèves du CP à la Terminale. Nous proposons des univers adaptés aux tranches d'âge afin de favoriser la concentration, encourager et motiver quel que soit le niveau. Nous souhaitons que chacun se sente bien pour apprendre et progresser en toute sérénité ! 

Fiches de cours les plus recherchées

Mathématiques

Grandeurs composées

Mathématiques

Statistiques : effectifs, moyenne, fréquences, diagrammes

Mathématiques

Statistiques : Etendue, médiane, quartiles

Mathématiques

Se préparer à l'épreuve de Brevet de Mathématiques

Mathématiques

Résoudre des problèmes à une ou plusieurs étapes

Mathématiques

Résoudre des problèmes complexes

Mathématiques

Encadrer une fraction simple entre deux entiers

Mathématiques

Addition et soustraction avec des nombres décimaux

Mathématiques

Diviser un nombre par 10, 100, 1000

Mathématiques

Diviser un nombre décimal par un nombre entier