Lycée   >   Terminale   >   Mathématiques complémentaires   >   Définitions et notations ensemblistes

Définitions et notations ensemblistes

  • Fiche de cours
  • Quiz
  • Profs en ligne
Objectifs
  • Connaitre le vocabulaire des ensembles : ensemble, élément, appartenance, couple, inclusion, intersection, réunion.
  • Savoir utiliser ce vocabulaire sur des exemples pris de différentes situations : intervalles, évènements en probabilités.
Points clés
  • On dit que a appartient à A et on note a ∈ A si a est un élément de A. Sinon on dit que a n’appartient pas à A et on note a ∉ A.
  • On dit qu’un ensemble A est inclus dans un ensemble B et on note A ⊂ B, si tous les éléments de A sont des éléments de B.
  • L’intersection de A et de B, notée A ∩ B, est l’ensemble qui contient les éléments communs à A et à B.
  • La réunion de A et de B, notée A U B, est l’ensemble qui contient tous les éléments de A et tous ceux de B.
Pour bien comprendre
  • Probabilités simples
  • Intervalles
  • Notion d’ensemble
1. Ensembles et relation d'appartenance
a. Ensemble et élément
Un ensemble est une collection d’objets. On le note par une lettre majuscule, par exemple A.
Un élément est le nom donné à un objet appartenant à un ensemble, il est noté avec une lettre minuscule par exemple a.

On peut désigner un ensemble de 3 façons :

  • En extension : on liste ses éléments entre 2 accolades (quand cela est possible) ;
  • En compréhension : on donne une propriété caractérisant ses éléments : par exemple « les entiers naturels inférieurs à 10 » ;
  • Par un diagramme : on met à l’intérieur les éléments de l’ensemble.
Exemples
= {0 ; 1 ; 2 ; 3}
E est un ensemble donné en extension (dans les accolades, l’ordre n’a pas d’importance). Ses éléments sont 0, 1, 2, et 3.

L’ensemble des réels strictement positifs est l’intervalle ]0 ; +∞[. C’est un ensemble donné en compréhension : on a donné une propriété de ses éléments.

L’ensemble représenté ci-dessous est désigné par un cercle à l’intérieur duquel on a mis les éléments.

b. Appartenance
On dit que a appartient à A et on note a ∈ A si a est un élément de A. Sinon on dit que a n’appartient pas à A et on note a ∉ A.
Exemple : E = {0 ; 1 ; 2 ; 3}
∈ E mais 4  E.
c. Ensembles particuliers
  • Singleton : un ensemble formé d’un seul élément est un singleton ;
  • Paire : un ensemble formé de 2 éléments ;
  • Ensemble vide : un ensemble qui n’a pas d’éléments et on le note Ø.
Exemples
= {a} est un singleton.
B ensemble des diviseurs de 7 est une paire car B = {1 ; 7}.
2. Relation entre 2 ensembles
a. Inclusion
On dit qu’un ensemble A est inclus dans un ensemble B et on note  B, si tous les éléments de A sont des éléments de B. On dit aussi que A est un sous-ensemble de B ou une partie de B.

Exemple
Dans le cas des ensembles de nombres, on a .
Tous les entiers naturels sont des entiers relatifs et sont des réels.
b. Intersection
On définit l’intersection de A et de B et on note A ∩ B l’ensemble qui contient les éléments communs à A et à B.

L’ensemble hachuré est A ∩ B.
Remarque
Lorsque A ∩ B est vide, on dit que les ensembles sont disjoints.
Exemple
Soient A l’ensemble des diviseurs de 4 et B l’ensemble des diviseurs de 6.
On a A = {1 ; 2 ; 4} et B = {1 ; 2 ; 3 ; 6}.
Alors les éléments communs à A et à B sont 1 et 2 donc A ∩ B = {1 ; 2}.
c. Réunion
On définit la réunion de A et de B et on note A U B l’ensemble qui contient tous les éléments de A et tous ceux de B.

Tout ce qui est coloré est l’ensemble A U B.
Exemple
Reprenons les ensembles A et B précédents : on a A U B = {1 ; 2 ; 3 ; 4 ; 6}.
d. Ensemble complémentaire
Soient E un ensemble et A un sous-ensemble de E.
On appelle « complémentaire de A dans E » l’ensemble des éléments de E qui ne sont pas dans A. On le note Ā ou encore EA.

Tout ce qui est coloré est Ā.
3. Application aux intervalles

On peut appliquer les définitions précédentes aux cas particuliers des intervalles de  que nous avons vus en seconde.

Exemple
Soient I = [4 ; 6] et J = [5 ; +∞[.
On peut trouver I ∩ J = [5 ; 6] : ce sont les réels qui appartiennent à I et à J.
De même, I U J = [4 ; +∞[ est la réunion de I et de J.
I et J ne sont pas disjoints car leur intersection n’est pas vide.
Le complémentaire de J dans est l’intervalle ]–∞ ; 5[.
4. Application aux événements en probabilité

On peut appliquer les définitions précédentes aux cas particuliers des évènements en probabilité que nous avons vus en seconde.

Exemple
Soit l’expérience aléatoire du lancer de dé, soit Ω l’ensemble des issues possibles de l’expérience. On a Ω = {1 ; 2 ; 3 ; 4 ; 5 ; 6}.
On définit les évènements I = « obtenir un multiple de 3 » et J = « obtenir un nombre impair ». On a I = {3 ; 6} et J = {1 ; 3 ; 5}.

I ∩ J = {3}. Ce sont les issues qui appartiennent à I et à J.
I U J = {1 ; 3 ; 5 ; 6}. C’est la réunion de I et de J.
I et J ne sont pas disjoints car leur intersection n’est pas vide.
Le complémentaire de J dans Ω est l’ensemble J = {2 ; 4 ; 6}.
I et J ne forment pas une partition de Ω.

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Question 1/5

La médiane de 6 notes est 13. Cela signifie que :

Question 2/5

On a obtenu la série statistique suivante :

Combien vaut la médiane ?

Question 3/5

On a obtenu la série ci-dessous :

Quelle est la médiane de cette série ?

Question 4/5

On a relevé les tailles en cm des élèves d’une classe :

 

Parmi les propositions suivantes, laquelle est vraie ?

Question 5/5

Les notes en français de deux classes littéraires sont données dans le tableau suivant :

Quelle est la note médiane ?

Vous avez obtenu75%de bonnes réponses !

Recevez l'intégralité des bonnes réponses ainsi que les rappels de cours associés :

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Pour en savoir plus sur la gestion de vos données personnelles et pour exercer vos droits, vous pouvez consulter notre charte.

Une erreur s'est produite, veuillez ré-essayer

Consultez votre boite email, vous y trouverez vos résultats de quiz!

Découvrez le soutien scolaire en ligne avec myMaxicours

Le service propose une plateforme de contenus interactifs, ludiques et variés pour les élèves du CP à la Terminale. Nous proposons des univers adaptés aux tranches d'âge afin de favoriser la concentration, encourager et motiver quel que soit le niveau. Nous souhaitons que chacun se sente bien pour apprendre et progresser en toute sérénité ! 

Fiches de cours les plus recherchées

Mathématiques complémentaires

Rappels sur les suites numériques : définition, génération, notation

Mathématiques complémentaires

Espérance et variance d'une loi à densité

Mathématiques complémentaires

La notion de limite de suite

Mathématiques complémentaires

Les listes en Python : création et manipulation

Mathématiques complémentaires

Les listes en Python : application aux probabilités et statistiques

Mathématiques complémentaires

Les listes en Python : application aux suites et aux fonctions

Mathématiques complémentaires

Les listes en Python : applications en géométrie analytique

Mathématiques complémentaires

Les listes en Python : application aux ensembles

Mathématiques complémentaires

La primitive comme solution d'une équation différentielle y'=f - Maths complémentaires

Mathématiques complémentaires

L'équation différentielle y'=ay+b