Lycée   >   Premiere   >   Physique Chimie   >   Variation de température et transformation physique par transfert thermique

Variation de température et transformation physique par transfert thermique

  • Fiche de cours
  • Quiz
  • Profs en ligne
Objectif(s)
Etudier à l’échelle microscopique l’effet d’une variation de température d’un corps. Voir les changements d’états de la matière. Aborder l’aspect énergétique. Traiter l’aspect expérimental.
1. Description à l'échelle microscopique de l'influence de la température
a. Effet de la température sur les différents états de la matière
Un gaz est composé de molécules (ou d’atomes pour un gaz rare) libres les unes par rapport aux autres, sans liaison chimique entre elles. Elles se heurtent mutuellement sans cesse, et rebondissent sur les obstacles se présentant devant elles. La température est reliée à leur agitation thermique. Plus la température est élevée, plus leur vitesse moyenne est forte. Ainsi, les molécules se heurteront et frapperont les parois d’un récipient plus souvent.

Un liquide est constitué de molécules glissant les unes sur les autres. Ces molécules interagissent entre elles par liaisons hydrogène (exemple de l’eau) ou liaisons de van der Waals. Ces liaisons se font et se défont sans cesse, mais assurent la cohésion compacte du liquide. De hautes températures font que les molécules sont plus mobiles qu’à basses températures et vibrent. Les liaisons sont alors plus éphémères.

Un solide cristallin est formé par des atomes ou molécules (pour solide moléculaire) liés entre eux par des liaisons chimiques stables. A très basses températures, les atomes/molécules sont immobiles. Dès que la température s’élève, ils vibrent. Plus la température augmente, plus les vibrations sont importantes, mais les atomes/molécules restent proches de leur position d’équilibre.

Globalement, une élévation de température augmente l’agitation thermique des constituants (atomes, molécules) d’un corps. On parle d’énergie microscopique.
b. Les différents changements d'états de la matière
La matière peut subir des changements d’états, rappelés par le diagramme ci-dessous :


Au niveau microscopique, un passage de l’état solide à l’état liquide s’accompagne d’une rupture des liaisons entre molécules, qui sont alors libres de se déplacer dans le liquide. Cependant, elles ne le quittent pas, car des liaisons hydrogènes ou van der Waals les en empêchent.

Un passage d’un état liquide à un état gazeux correspond à une rupture de ces liaisons de basses énergies. Les molécules n’ont alors plus de lien entre elles et quittent le liquide pour former la phase aqueuse.

La sublimation est un changement d’état où les liaisons chimiques assurant la cohésion du solide sont rompues et aucune autre liaison n’existe alors entre les atomes/molécules qui passent directement en phase gazeuse. La sublimation est rare à pression ambiante, sauf pour la neige carbonique. Pour l’eau, la sublimation n’est possible qu’à très basses pressions (comètes).

Les autres changements d’état correspondent aux opérations inverses de ce que nous venons de décrire.
2. Etude énergétique
a. Conventions et unités
Par convention, quand un système reçoit de l’énergie sous forme de chaleur, cette énergie Q est comptée de manière positive. Quand il cède de la chaleur à son environnement, cette énergie est comptée négativement.

L’unité légale pour exprimer une énergie est le Joule. Cependant, une unité usuelle encore rencontrée (en nutrition) est la calorie. Une kilocalorie, notée aussi Calorie (attention à la majuscule), vaut environ 4,184 kJ.

L’unité de température est le kelvin (K). Une température T en kelvin est reliée à une température en degré Celsius par la relation .
b. Capacité calorifique
Quel que soit le matériau ou son état physique, sa variation d’énergie microscopique Q est reliée à sa variation de température par la formule générale, à pression constante (pression atmosphérique) :

La relation est valable tant que le corps ne subit pas de changement d’état physique. La quantité de chaleur Q est en Joule. , en kelvin, est la différence entre la température finale et la température initiale . Le terme C est la capacité thermique ou capacité calorifique du corps, en J/K. La capacité thermique varie selon l’état physique, et change d’un corps à l’autre.

Il est courant d’utiliser la capacité thermique massique c :
c désigne l’énergie qu’il faut apporter à un kilogramme du corps pour élever sa température d’un kelvin. Elle s’exprime en , et est aussi appelée chaleur massique ou chaleur spécifique. La masse m du corps est en kilogramme. Pour l’eau liquide, .

On emploie aussi la capacité thermique molaire , qui est l’énergie requise pour élever d’un kelvin la température d’une mole du corps. En notant n le nombre de moles, on a . Ainsi, est en .

Remarque : Une variation d’un kelvin est égale à une variation d’un degré Celsius. On peut donc exprimer dans les températures en kelvin ou en degrés Celsius, on obtiendra la même variation.
c. Chaleurs latentes de changement d'état
On chauffe de l’eau. La température va monter et l’eau va commencer à bouillir. Pendant ce changement d’état, la température se maintiendra à 100°C, pour ensuite ré-augmenter quand l’eau sera entièrement vaporisée. Le changement d’état liquide/vapeur a nécessité un apport d’énergie.

Lorsqu’un liquide est à sa température d’ébullition, l’énergie thermique Q à fournir au liquide de masse m afin de le faire passer en phase gazeuse est donnée par la relation :

La relation sera utilisée à pression constante (pression atmosphérique). La constante est nommée chaleur latente de vaporisation et s’exprime en . La chaleur latente de liquéfaction est donnée par . Donc, de l’énergie est libérée par de la vapeur qui se liquéfie.

De la même manière, la chaleur latente de fusion est l’énergie requise pour provoquer le passage à l’état liquide d’un kilogramme de solide à sa température de fusion. La chaleur latente de solidification est son opposée, c’est l’énergie libérée lors de la solidification.

Naturellement, il existe aussi la chaleur latente de sublimation et de condensation.

Remarque : On peut également raisonner avec des chaleurs latentes molaires.
3. Aspects expérimentaux
a. Mesures calorimétriques
En travaux pratiques, on est amené à trouver expérimentalement la capacité calorifique d’un matériau, sa chaleur latente de fusion ... L’instrument utilisé est un calorimètre :

Cette enceinte est isolée thermiquement pour minimiser les échanges thermiques avec le milieu environnant. Dans une manipulation, on détermine au préalable la capacité thermique C du calorimètre pour l’inclure dans les calculs.
b. Premier exemple : déterminer une température d'équilibre
On mélange deux liquides. On a un liquide chaud de température , de masse et de capacité thermique massique , et un liquide froid avec respectivement , et , où . Il va s’instaurer un équilibre thermique, qui s’écrit comme :

est la quantité de chaleur cédée par le corps chaud, et celle reçue par le corps froid. Sans changement d’état de la matière, l’équation d’équilibre devient, en introduisant la température d’équilibre du système :


NB : pour ce calcul, le système a été considéré comme totalement isolé, ce qui n’est jamais totalement réalisé.
c. Deuxième exemple : trouver expérimentalement une chaleur latente de fusion
Dans un calorimètre, on verse une masse d’eau liquide. Après atteinte de l’équilibre thermique, on note une température . On plonge alors un glaçon de masse à température de fusion (). Une fois la glace fondue, on relève la température d’équilibre final . Cet équilibre est décrit par :


C est la capacité thermique du calorimètre.
pour faire fondre la glace et l’amener sous forme liquide à la température d’équilibre .

En conséquence : 

D’où on tire : .
Application numérique :
L'essentiel
La matière se présente habituellement sous trois états : solide, liquide, gazeux.
Une élévation de température augmente l’agitation thermique des constituants (atomes/molécules) de la matière. La variation d’énergie thermique Q est reliée à la variation de température  par :
.
La constante C est la capacité thermique du corps étudié, sous un certain état physique. On introduit alors la capacité thermique massique  ou molaire  .

La chaleur latente de vaporisation  d’un liquide est la quantité de chaleur requise pour faire passer en phase gazeuse un kilogramme du liquide. La quantité de chaleur Q pour vaporiser une masse m de liquide est alors . De même, on a  pour la fusion d’un solide.

Une énergie reçue par un système physique est comptée positivement, une énergie cédée est comptée négativement. Lorsque deux corps sont mis en présence dans une enceinte isolée thermiquement (calorimètre), il y a équilibre thermique lorsque les quantités de chaleur échangées et  entre les deux vérifient la relation : .

Comment as-tu trouvé ce cours ?

Évalue ce cours !

 

Question 1/5

La médiane de 6 notes est 13. Cela signifie que :

Question 2/5

On a obtenu la série statistique suivante :

Combien vaut la médiane ?

Question 3/5

On a obtenu la série ci-dessous :

Quelle est la médiane de cette série ?

Question 4/5

On a relevé les tailles en cm des élèves d’une classe :

 

Parmi les propositions suivantes, laquelle est vraie ?

Question 5/5

Les notes en français de deux classes littéraires sont données dans le tableau suivant :

Quelle est la note médiane ?

Vous avez obtenu75%de bonnes réponses !

Recevez l'intégralité des bonnes réponses ainsi que les rappels de cours associés :

Votre adresse e-mail sera exclusivement utilisée pour vous envoyer notre newsletter. Vous pourrez vous désinscrire à tout moment, à travers le lien de désinscription présent dans chaque newsletter. Pour en savoir plus sur la gestion de vos données personnelles et pour exercer vos droits, vous pouvez consulter notre charte.

Une erreur s'est produite, veuillez ré-essayer

Consultez votre boite email, vous y trouverez vos résultats de quiz!

Découvrez le soutien scolaire en ligne avec myMaxicours

Le service propose une plateforme de contenus interactifs, ludiques et variés pour les élèves du CP à la Terminale. Nous proposons des univers adaptés aux tranches d'âge afin de favoriser la concentration, encourager et motiver quel que soit le niveau. Nous souhaitons que chacun se sente bien pour apprendre et progresser en toute sérénité ! 

Fiches de cours les plus recherchées

Physique Chimie

Exemples de champs scalaires et vectoriels

Physique Chimie

Cartographier un champ électrostatique ou un champ magnétique

Physique Chimie

Champ magnétique

Physique Chimie

Champ électrostatique

Physique Chimie

Champ gravitationnel et champ de pesanteur

Physique Chimie

Les différentes formes d'énergie

Physique Chimie

Etude de l'évolution de l'énergie d'un système à partir d'un enregistrement

Physique Chimie

Conversion d'énergie et rendement

Physique Chimie

Electronégativité et polarité

Physique Chimie

Stockage et conversion de l'énergie chimique