Fiche de cours

Spectre RMN du proton

Lycée   >   Terminale   >   Physique Chimie   >   Spectre RMN du proton

  • Fiche de cours
  • Quiz et exercices
  • Vidéos et podcasts
Objectifs
Présenter le principe de la spectroscopie par Résonance Magnétique Nucléaire. Pour cela, indiquer succinctement les aspects théoriques. Introduire la notion de déplacement chimique. Montrer comment interpréter un spectre RMN du proton en chimie organique, expliquer la méthode d’intégration du spectre et la règle des (n+1)-uplets.
1. La résonance magnétique nucléaire
Remarque : la partie théorique exposée ici n’est pas exigible, mais sert à présenter le phénomène exploité par les spectres RMN.

Certains noyaux d’atome peuvent posséder un spin nucléaire. De manière imagée, on peut voir le spin comme une rotation d’une particule sur elle-même. Lorsqu’un tel noyau est plongé dans un champ magnétique , son énergie va évoluer selon la valeur du champ appliqué et selon son spin (orienté dans le sens du champ ou opposé au champ). Il y a alors deux niveaux d’énergie possibles. C’est l'effet Zeeman. Par la suite, nous nous focaliserons sur le noyau d’hydrogène , c'est-à-dire le proton.



Le proton peut passer de l’état inférieur à l’état supérieur en absorbant une radiation électromagnétique, si celle-ci a une énergie égale à l’écart entre les deux états, où est la constante de Planck, est la fréquence en Hz. C’est la Résonance Magnétique Nucléaire (RMN). Pour un champ magnétique de 1 Tesla, la fréquence de résonance du proton est de 42,5759 MHz. On est ainsi dans le domaine des ondes radios.
2. Le déplacement chimique : la spectroscopie RMN du proton
Dans la pratique, le proton, en tant que noyau d’un atome d’hydrogène, est affecté par la présence des électrons de son proche environnement : le sien et ceux des atomes voisins. Cela se manifeste par une légère modification de sa fréquence de résonance. Ce phénomène est le déplacement chimique.

Le déplacement chimique fait que la RMN est exploitable en chimie organique. En effet, un spectre RMN du proton fournit des renseignements sur l’environnement des atomes d’hydrogène d’une molécule, via la mesure des fréquences de résonance des protons correspondants. Il existe d’autres spectres RMN, comme celui du deutérium, du carbone 13, etc. Le carbone 12 n’a pas de spin nucléaire, donc ne peut pas servir en RMN.

Un spectre RMN du proton représente les pics de résonance des protons en fonction du déplacement chimique. Un pic (ou un groupement très rapproché de pics) est désigné sous le terme de signal en RMN. Par exemple, le spectre RMN du proton pour l’éthanol est :



Le déplacement chimique est noté et s’exprime en ppm (parties par million). Il est porté par l’axe des abscisses, qui est orienté à l’envers. Conventuellement, le déplacement de référence est celui des protons du tétraméthylsilane (TMS). Autrement dit, le déplacement vaut 0 ppm pour les protons de cette molécule.

Le tétraméthylsilane

Remarque : Le d’une fréquence est obtenu par la relation , où   est la fréquence de résonance des protons du TMS, et la fréquence de travail du spectromètre RMN. Le sert à avoir directement en ppm. Par exemple, pour un appareil où et pour un écart , .
3. Exploitation d'un spectre RMN du proton
a. Comparaison des déplacements chimiques avec ceux des tables
Au sein d’une molécule, lorsque des protons présentent un environnement proche identique, leur fréquence de résonance est la même. On parle de protons équivalents. Dans l’exemple de l’éthanol les protons de sont équivalents. Il en est de même avec ceux de . Des tables ont été établies afin de donner la correspondance entre le déplacement chimique et l’environnement des atomes d’hydrogène associés. Par exemple :

Structure Déplacement chimique

R est une chaine carbonée linéaire sans liaison multiple
0,9 ppm
1,4 ppm
1,3 ppm
3,6 ppm
de 1 à 6 ppm
de 10 à 13 ppm

Pour l’éthanol, on peut conjecturer que le signal à correspond aux protons de , celui à aux et à , voir spectre partie 3.b. Dans la pratique, en cas d’ambigüité, le spectre RMN du proton est exploité en même temps que le spectre IR de la même molécule (voir fiche dédiée).
b. Intégration du spectre RMN
L’étape suivante dans l’analyse du spectre RMN du proton est de procéder à son intégration, au sens mathématique du terme. Autrement dit, sur le spectre intégré, l’ordonnée d’un point de la courbe résulte de la sommation des ordonnées de tous les points du spectre dont les abscisses sont situées « à gauche » de celle de notre point. Pour l’éthanol, on trouve numériquement :



Chaque signal donne lieu à une « marche » ou palier. L’intérêt de cette procédure est que la hauteur d’une marche est proportionnelle au nombre de protons équivalents qui composent le signal correspondant.

Par exemple, pour , il n’y a qu’un seul proton concerné. Comme la marche pour est deux fois plus haute, on vérifie qu’il y a bien 2 protons équivalents pour le signal à . De même, la marche de est 3 fois plus haute que celle de , ce qui confirme aussi que le signal à comporte 3 protons équivalents.
c. Règle des (n+1) uplets : multiplicité d'un signal
Sur le spectre de l’éthanol, il apparaît une démultiplication des certains signaux. On parle de multiplets. Ce phénomène apporte des renseignements supplémentaires sur l’environnement proche des protons. Considérons un groupe de protons équivalents A. Si A a pour voisin un autre groupe de protons équivalents B, de fréquence de résonance différente, B va perturber légèrement la résonance de A, d’où cette démultiplication. On dit qu’il y a couplage entre les deux groupes de protons A et B. En parallèle, il n’y a pas couplage entre protons équivalents (au sein de A par exemple).



La règle des (n+1)-uplets explique que lorsque des protons équivalents ont dans leur proche voisinage n autres protons (de fréquence(s) de résonance différente(s)), cela donne un signal composé de n+1 pics très rapprochés (multiplicité de n+1). Dans la pratique, quand des protons équivalents sont liés à un carbone C, les protons proches voisins désignent ceux qui sont liés à des carbones eux-mêmes liés directement à C.

→ Pour le signal de , les 3 protons équivalents comptent pour 1 pic. Leur environnement proche est composé par les deux protons équivalents de . D’après la règle, cela donne alors pics pour le signal de . C’est un triplet.

→ Pour le signal de , ces deux protons comptent pour 1 pic. Leur voisinage concerne les 3 protons équivalents de . On a pics, c'est-à-dire un quadruplet.

→ Pour le signal de , le O empêche le couplage du proton de H, dans un sens ou dans l’autre. Le proton est ainsi isolé. Il ne forme qu’un pic unique, un singulet. De manière générale, les protons liés à un oxygène (alcool, acide carboxylique) ou un azote (amine, amide) ne peuvent pas se coupler avec d’autres protons.
L'essentiel
La spectroscopie RMN du proton est basée sur le fait :
• qu’un proton placé dans un champ magnétique peut absorber une radiation électromagnétique (onde radio) de fréquence égale à sa fréquence de résonance.
• la fréquence de résonance du proton (en tant que noyau d’un atome d’hydrogène) est influencée par son environnement chimique au sein de la molécule étudiée. C’est le déplacement chimique.

Un spectre RMN du proton fait apparaître les pics de résonance (signaux) en fonction du déplacement chimique . Il permet d’avoir accès :
• au groupement d’atomes portant l’atome d’hydrogène, en associant le déplacement chimique à une structure chimique, via des tables.
• au nombre de protons ayant un environnement similaire (protons équivalents, résonant à la même fréquence) par intégration du spectre.
• au nombre de protons proches voisins, par étude des multiplets d’un signal résultant du couplage entre protons non équivalents entre eux : c'est la règle des (n+1)-uplets.

Évalue ce cours !

 

Des quiz et exercices pour mieux assimiler sa leçon

La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.

S’abonner

 

Des exercices variés pour ne pas s’ennuyer

Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !

Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.

S’abonner

 

Des quiz pour une évaluation en direct

Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.

myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.

S’abonner

Des vidéos et des podcasts pour apprendre différemment

Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.

Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !

S’abonner

 

Des podcasts pour les révisions

La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.

Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.

S’abonner

 

Des vidéos de cours pour comprendre en image

Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !

S’abonner

Découvrez le soutien scolaire en ligne avec myMaxicours

Plongez dans l'univers de myMaxicours et découvrez une approche innovante du soutien scolaire en ligne, conçue pour captiver et éduquer les élèves de CP à la terminale. Notre plateforme se distingue par une riche sélection de contenus interactifs et ludiques, élaborés pour stimuler la concentration et la motivation à travers des parcours d'apprentissage adaptés à chaque tranche d'âge. Chez myMaxicours, nous croyons en une éducation où chaque élève trouve sa place, progresse à son rythme et développe sa confiance en soi dans un environnement bienveillant.

Profitez d'un accès direct à nos Profs en ligne pour une assistance personnalisée, ou explorez nos exercices et corrigés pour renforcer vos connaissances. Notre assistance scolaire en ligne est conçue pour vous accompagner à chaque étape de votre parcours éducatif, tandis que nos vidéos et fiches de cours offrent des explications claires et concises sur une multitude de sujets. Avec myMaxicours, avancez sereinement sur le chemin de la réussite scolaire, armé des meilleurs outils et du soutien de professionnels dédiés à votre épanouissement académique.

Fiches de cours les plus recherchées

Physique Chimie

Conservation de la quantité de mouvement d'un système isolé

Physique Chimie

Postulat d'Einstein sur l'invariance de la célérité de la lumière dans le vide : la relativité restreinte

Physique Chimie

Une conséquence de la relativité restreinte : caractère relatif du temps, dilatation des durées

Physique Chimie

Visualiser expérimentalement des atomes et des molécules

Physique Chimie

Microphone, enceintes acoustiques, casque audio

Physique Chimie

Ressources minérales et organiques dans les océans

Physique Chimie

Rayonnements dans l'Univers

Physique Chimie

Les ondes dans la matière

Physique Chimie

Catalyse homogène, hétérogène et enzymatique

Physique Chimie

Représentation spatiale de molécules