Circuit RL en série (1)
- Fiche de cours
- Quiz et exercices
- Vidéos et podcasts
Dans cette étude, vous vous familiariserez avec les circuits RL en série en étudiant :
- les notions et les différents calculs concernant l'impédance,
- la relation de phase entre la tension et le courant,
- les puissances et le facteur de puissance.
L'impédance, symbolisée par Z, est la mesure de l'opposition totale au passage du courant alternatif dans un circuit électrique. Elle s'exprime en ohms et est le résultat du rapport entre la tension appliquée au circuit et le courant total qui le traverse.
L'impédance peut être
calculée grâce à la formule
suivante :
Où :
Z : impédance du circuit en ohms
U : valeur efficace de la tension appliquée au circuit en volts (V)
I : valeur efficace du courant total du circuit en ampères (A)
Dans un circuit partiellement inductif, comme celui représenté à la figure 3.1, il y a à la fois une résistance (R) et une bobine, présentant une réactance inductive (XL), raccordées en série.
L'impédance est alors une combinaison de ces deux valeurs. Toutefois, on ne peut pas additionner directement la résistance et la réactance inductive:
- En effet, l'opposition de la résistance ne provoque aucun déphasage entre la tension à ses bornes et le courant qui la traverse.
- La bobine, au contraire, s'oppose au passage du courant et provoque un déphasage de 90° entre la tension à ses bornes et le courant qui la traverse.
Pour tenir compte de tous ces effets, il est possible de représenter la relation entre la valeur de la résistance R et celle de la réactance inductive XL par un diagramme vectoriel.
L'impédance (Z) du circuit représente alors la somme des deux vecteurs :
Étant donné que les vecteurs représentant la résistance (R) et la réactance inductive (XL) forment un angle de 90°, il est possible d'appliquer la règle de Pythagore (règle des carrés) afin de déterminer l'impédance du circuit. On utilise alors la formule suivante :
Z2 = R2 + XL2
Donc : .
Vous savez maintenant que l'impédance d'un circuit RL est obtenue par la somme vectorielle de la résistance et de la réactance inductive. Vous savez également que cette impédance est la mesure de l'opposition globale du circuit RL au passage du courant alternatif et qu'elle présente à la fois la caractéristique d'une résistance et d'une bobine.
Par conséquent, la relation de phase entre la tension totale et le courant total du circuit sera affectée par ces caractéristiques.
• Calcul
de l'impédance
:
Calculez
l'impédance, en ohms, du circuit de la figure suivante :
Solution
1e
étape
Calcul de la
réactance inductive :
Formule pour calculer la réactance
inductive : .
Où : Pi = 3,14, f = 50 Hz, L = 0,13 H, .
Donc : .
2e
étape
Calcul de
l'impédance :
Formule pour calculer l'impédance :
.
Où : R = 100 Ohms et XL = 41 Ohms
Donc : .
L'impédance du circuit est égale à 108,8 Ohms.
On peut conclure que l'impédance:
- d'un circuit RL est obtenue par la somme vectorielle de la résistance et de la réactance inductive.
- est la mesure de l'opposition globale du circuit RL au passage du courant alternatif,
- représente à la fois la caractéristique d'une résistance et d'une bobine.
Par conséquent, la relation de phase entre la tension totale et le courant total du circuit sera affectée par ces caractéristiques.
Lorsqu'une tension alternative est appliquée à un circuit RL en série, comme celui de la figure 3.1, un courant circule.
Ce courant a la même valeur dans tout le circuit, qu'il circule dans la résistance ou dans la bobine.
Il est déterminé par le
rapport entre la tension appliquée (U) et
l'impédance (Z) du circuit :
Cependant, la valeur de la chute de tension aux bornes de la résistance (UR) n'est pas égale à celle de la chute de tension aux bornes de la bobine (UL). Effectivement, la valeur de la tension dépend de la résistance ou de la réactance inductive.
• Pour la résistance R : la chute de tension à ses bornes (UR) est en phase avec le courant (I) du circuit. Elle est déterminée par le produit du courant et de la résistance. La figure 3.4 représente les formes d'ondes et les vecteurs de Fresnel représentatifs de la relation de phase entre la tension et le courant dans une résistance.
Illustration animée : Relation entre la tension et le courant dans une résistance.
• Pour la bobine (L) : la chute de tension à ses bornes (UL) est en avance de phase de 90° par rapport au courant (I). Elle est déterminée par le produit de la réactance inductive et du courant. La figure 3.5 vous montre la relation de phase entre la tension et le courant dans une bobine.
Illustration animée : Relation entre la tension et le courant dans une bobine.
Sachant que le courant qui circule dans la résistance est le même que celui qui circule dans la bobine, il est permis de conclure que la tension aux bornes de la bobine (UL) est en avance de phase de 90° par rapport à la tension aux bornes de la résistance (UR). La figure 3.6 représente cette relation de phase.
Illustration animée : Relation de phase entre les tensions et le courant d'un circuit RL en série.
Logiquement, la somme de la valeur des tensions UL et UR doit être égale à la valeur de la tension (U) appliquée au circuit.
Cependant, à cause de l'angle de 90° formé par le vecteur représentatif de la résistance et celui de la bobine, il n'est pas possible d'additionner directement les valeurs des tensions UL et UR.
Toutefois, leur somme peut être obtenue par l'addition des vecteurs, comme il est montré à la droite de la figure ci-dessus.
Cette figure représente également:
- la relation de phase entre la tension (U) appliquée au circuit,
- la chute de tension aux bornes de la résistance (UR) et celle aux bornes de la bobine (UL).
Cette relation se traduit mathématiquement par les équations suivantes :
U2 = UR2 + UL2.
Donc :
Généralement, pour un
circuit RL en série, la tension (U) appliquée
au circuit forme toujours avec le courant total du circuit un
angle . Cet angle dépend de la chute de tension
aux bornes de la résistance et de celle aux bornes de la
bobine, comme il est montré à la
figure ci-dessus.
Cet angle représente effectivement la mesure du déphasage entre la tension appliquée et le courant du circuit et il peut être déterminé par la formule suivante :
Où :
: angle de déphasage en degrés
(°)
tan-1 : fonction
trigonométrique de l'arc de la
tangente
UL : tension de la bobine
en volts (V)
UR : tension de la
résistance en volts (V)
Pour calculer la valeur de l'angle à l'aide d'une calculatrice, il suffit de diviser la valeur de UL par celle de UR et de prendre l'inverse de la tangente (INV - TAN).
Comme la valeur du courant est partout la
même dans le circuit, la valeur de la chute de tension aux
bornes de la bobine (UL) ainsi que celle aux bornes
de la résistance (UR) dépendent
respectivement de la valeur de la réactance
inductive (XL) et de la
résistance (R) Ainsi, le rapport entre ces deux
tensions équivaut au
rapport entre la réactance inductive et la résistance
.
Il est possible de calculer l'angle de
phase du circuit en utilisant ce rapport, ce
qui donne l'équation suivante :
Pour un circuit RL en série, la tension appliquée est toujours en avance de phase par rapport au courant total du circuit.
Ce déphasage est toujours représenté par un angle compris entre 0° et 90°:
- puisqu'un angle de phase de 0° correspond à un circuit purement résistif (sans bobine),
- et qu'un angle de phase de 90° correspond à un circuit purement inductif (sans résistance).
Le circuit de la figure suivante est alimenté par une tension de 220 V et présente les valeurs suivantes : Z = 108 Ω, R = 100 Ω et XL = 41 Ω.
1. Calculez, en
ampères (A), le courant total du
circuit.
2. Tracez le diagramme
de Fresnel des tensions et du
courant.
3. Déterminez,
en degrés (°), le déphasage entre le courant total
et la tension du circuit.
Solution :
1. Calcul du courant total
Formule pour calculer le courant :
;
Où : U = 220 V et Z = 108 Ω.
Donc : .
Le courant du circuit est égal à 2,04 A.
2. Diagramme de Fresnel
Pour tracer le diagramme de Fresnel, il faut d'abord calculer la chute de tension dans chacun des composants R et L.
- Calcul de la chute de tension de la résistance :
Formule pour le calcul :
Où :
R = 100 Ω,
I = 2,04 A.
Donc : .
- Calcul de la chute de tension de la bobine :
Formule pour le calcul : .
Où : XL = 41 Ω et I = 2,04 A.
Donc : .
Sachant que la chute de tension de la résistance est toujours en phase avec le courant et celle de la bobine toujours en avance de phase de 90° par rapport au courant, voici le diagramme de Fresnel du circuit de la figure étudiée :
3. Calcul de l'angle de déphasage :
Formule pour calculer l'angle de
déphasage :
Où : UL = 83,64 V
et UR = 204 V
Donc :
L'angle de déphasage peut également être déterminé à partir des valeurs R et XL.
Formule pour le calcul :
Où : XL = 41 Ω et R = 100 Ω
Donc :
La tension appliquée est en avance de phase de 22,3° par rapport au courant du circuit.
Des quiz et exercices pour mieux assimiler sa leçon
La plateforme de soutien scolaire en ligne myMaxicours propose des quiz et exercices en accompagnement de chaque fiche de cours. Les exercices permettent de vérifier si la leçon est bien comprise ou s’il reste encore des notions à revoir.
Des exercices variés pour ne pas s’ennuyer
Les exercices se déclinent sous toutes leurs formes sur myMaxicours ! Selon la matière et la classe étudiées, retrouvez des dictées, des mots à relier ou encore des phrases à compléter, mais aussi des textes à trous et bien d’autres formats !
Dans les classes de primaire, l’accent est mis sur des exercices illustrés très ludiques pour motiver les plus jeunes.
Des quiz pour une évaluation en direct
Les quiz et exercices permettent d’avoir un retour immédiat sur la bonne compréhension du cours. Une fois toutes les réponses communiquées, le résultat s’affiche à l’écran et permet à l’élève de se situer immédiatement.
myMaxicours offre des solutions efficaces de révision grâce aux fiches de cours et aux exercices associés. L’élève se rassure pour le prochain examen en testant ses connaissances au préalable.
Des vidéos et des podcasts pour apprendre différemment
Certains élèves ont une mémoire visuelle quand d’autres ont plutôt une mémoire auditive. myMaxicours s’adapte à tous les enfants et adolescents pour leur proposer un apprentissage serein et efficace.
Découvrez de nombreuses vidéos et podcasts en complément des fiches de cours et des exercices pour une année scolaire au top !
Des podcasts pour les révisions
La plateforme de soutien scolaire en ligne myMaxicours propose des podcasts de révision pour toutes les classes à examen : troisième, première et terminale.
Les ados peuvent écouter les différents cours afin de mieux les mémoriser en préparation de leurs examens. Des fiches de cours de différentes matières sont disponibles en podcasts ainsi qu’une préparation au grand oral avec de nombreux conseils pratiques.
Des vidéos de cours pour comprendre en image
Des vidéos de cours illustrent les notions principales à retenir et complètent les fiches de cours. De quoi réviser sa prochaine évaluation ou son prochain examen en toute confiance !
