Mathématiques appliquées

Maxicours vous propose de decouvrir un extrait de quelques cours de Mathématiques appliquées. Pour proposer un accompagnement scolaire de qualite en Mathématiques appliquées, toutes nos ressources pédagogiques ont été conçues spécifiquement pour Internet par des enseignants de l'Education nationale en collaboration avec notre équipe éditoriale.

Cours / Mathématiques appliquées / BAC PRO Maintenance des équipements industriels (MEI)
Résumé général sur la logique séquentielle  

Cette partie renferme le résumé de chacune des études de ce module.

A la suite de la lecture de ce cours, vous serez en mesure d'évaluer si vous avez retenu toutes les notions présentées dans ce module.

Si certaines notions vous semblent nouvelles ou incomprises, reprenez votre lecture de l'étude où il en est question.

Résumé sur les notions de base de la logique séquentielle :

- Un circuit logique séquentiel est un circuit qui possède un nombre fini et déterminé d'états logiques de la sortie.

- Dans le calcul de l'état logique à l'instant suivant de la sortie d'un circuit logique séquentiel, on se sert des états logiques des entrées présentes et de l'état logique de la sortie à l'instant présent.

- L'état logique de la sortie d'un circuit logique séquentiel à un instant donné doit être mémorisé pour servir au calcul de l'état logique de la sortie à l'instant suivant.

- Un circuit logique séquentiel asynchrone est un circuit logique séquentiel où le changement de l'état logique de la sortie n'est pas commandé par le signal d'une horloge.

- Un circuit logique séquentiel synchrone est un circuit logique séquentiel où le changement de l'état logique de la sortie est commandé par le signal d'une horloge.

- Le signal d'une horloge est une onde carrée dont la période est mesurée en secondes.

- La fréquence du signal d'une horloge est l'inverse de sa période. Cette fréquence est mesurée en hertz.

- Le front ascendant de l'onde produite par le circuit d'une horloge est appelé le front montant.

- Le front descendant de l'onde produite par le circuit d'une horloge est appelé le front descendant.

- Dans la bascule "RS", l'entrée S permet de mettre la sortie Q à l'état logique 1, alors que l'entrée R la remet à l'état logique 0.

- La bascule "RS" produit deux sorties inversées l'une par rapport à l'autre : Q et . Si Q est à l'état logique 1,  est à l'état logique 0. Si Q est à l'état logique 0,  est à l'état logique 1.

- Quand les deux entrées S et R d'une bascule "RS" sont toutes les deux à l'état logique 0, les sorties Q et  conservent leurs états logiques.

- Quand l'entrée S est à l'état logique 0 alors que l'entrée R est à l'état logique 1, la sortie Q de la bascule "RS" passe à l'état logique 0.

- Quand l'entrée S est à l'état logique 1 alors que l'entrée R est à l'état logique 0, la sortie Q de la bascule "RS" passe à l'état logique 1.

- Si les deux entrées S et R d'une bascule "RS" sont toutes les deux à l'état logique 1, le comportement de la sortie est imprévisible.

- La bascule "RS" peut être synchronisée par l'ajout de deux portes "ET" au circuit initial. On obtient alors une bascule "RST" où les changements des états logiques des sorties sont synchronisés avec le signal d'une horloge.

- Une bascule "D" possède deux bornes d'entrée : D pour les données et T pour le signal de l'horloge. La bascule "D" est une bascule synchrone.

- La bascule "D" fournit deux sorties inversées l'une par rapport à l'autre : Q et .

- La sortie Q d'une bascule "D" prend l'état logique de la donnée présente à son entrée. Le changement de l'état logique de la sortie Q s'effectue en synchronisme avec le signal d'une horloge.

- La bascule "JK" possède deux entrées données J et K, une entrée T pour le signal de l'horloge ainsi que deux entrées asynchrones S et R. Elle possède deux sorties inversées l'une par rapport à l'autre : Q et .

- La bascule "JK" peut fonctionner aussi bien en mode asynchrone qu'en mode synchrone.

- Le mode de fonctionnement synchrone d'une bascule "JK" est obtenu quand les deux entrées S et R sont toutes les deux à l'état logique 1. Dans ce mode de fonctionnement, les sorties Q et  conservent leurs états logiques quand les entrées J et K sont toutes les deux à l'état logique 0. Si l'entrée J est à l'état logique 0 alors que l'entrée K est à l'état logique 1, la sortie Q passe à l'état logique 0. Si l'entrée J est à l'état logique 1 alors que l'entrée K est à l'état logique 0, la sortie Q passe à l'état logique 1. Quand les deux entrées J et K sont toutes les deux à l'état logique 1, les états logiques des sorties Q et  basculent vers les états logiques opposés.

- Les entrées S et R ne doivent jamais être toutes les deux à l'état logique 0. Quand l'entrée S est à l'état logique 0, la sortie Q passe à l'état logique 0. Quand l'entrée S est à l'état logique 1, la sortie Q passe à l'état logique 1.

- Un registre à décalage est un assemblage de bascules commandées par une horloge commune.

- Dans un registre à décalage, une donnée introduite à l'entrée de la première bascule se propage dans les bascules suivantes à chaque signal de l'horloge.

- Le diagramme d'état est une représentation graphique de tous les états logiques possibles d'un circuit séquentiel.

- Chaque état logique est schématisé par une ellipse dans un diagramme d'état. Le passage d'un état logique à un autre est soumis à une condition de passage appelée transition.

- Les compteurs sont des circuits logiques séquentiels qui assurent la fonction de comptage binaire.

- Un compteur série est réalisé par la mise en cascade de plusieurs bascules "D". Seule la première bascule "D" est connectée au circuit d'une horloge. Les

...
Voir tout le contenu pédagogique relatif à ce sujet
Connexion ou Créer un compte